skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [2];  [1];  [1]
  1. Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China)
  2. Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041 (China)

Highlights: • E2 affects not only estrogen-receptor α positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor α-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor α (ERα), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ERα show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ERα. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ERα independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ERα -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level.

OSTI ID:
22416304
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 445, Issue 2; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English