skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photodissociation resonances of jet-cooled NO{sub 2} at the dissociation threshold by CW-CRDS

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4919093· OSTI ID:22415741
 [1]
  1. Laboratoire de Physico-Chimie de l’Atmosphère, Université du Littoral Côte d’Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France)

Around 398 nm, the jet-cooled-spectrum of NO{sub 2} exhibits a well identified dissociation threshold (D{sub 0}). Combining the continuous-wave absorption-based cavity ringdown spectroscopy technique and laser induced fluorescence detection, an energy range of ∼25 cm{sup −1} is analyzed at high resolution around D{sub 0}. In addition to the usual molecular transitions to long-lived energy levels, ∼115 wider resonances are observed. The position, amplitude, and width of these resonances are determined. The resonance width spreads from ∼0.006 cm{sup −1} (i.e., ∼450 ps) to ∼0.7 cm{sup −1} (∼4 ps) with large fluctuations. The identification of at least two ranges of resonance width versus the excess energy can be associated with the opening of the dissociation channels NO{sub 2}→NO(X {sup 2}Π{sub 1/2}, v=0, J=1/2)+O({sup 3}P{sub 2}) and NO{sub 2}→NO(X {sup 2}Π{sub 1/2}, v=0, J=3/2)+O({sup 3}P{sub 2}). This analysis corroborates the existence of loose transition states close to the dissociation threshold as reported previously and in agreement with the phase space theory predictions as shown by Tsuchiya’s group [Miyawaki et al., J. Chem. Phys. 99, 254–264 (1993)]. The data are analyzed in the light of previously reported frequency- and time-resolved data to provide a robust determination of averaged unimolecular dissociation rate coefficients. The density of reactant levels deduced (ρ{sub reac} ∼ 11 levels/cm{sup −1}) is discussed versus the density of transitions, the density of resonances, and the density of vibronic levels.

OSTI ID:
22415741
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English