skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temperature effects on prevalent structures of hydrated Fe{sup +} complexes: Infrared spectroscopy and DFT calculations of Fe{sup +}(H{sub 2}O){sub n} (n = 3–8)

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4902408· OSTI ID:22413269
;  [1]; ;  [2]; ;  [3]
  1. Department of Chemistry, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan)
  2. Department of Chemistry, Graduate School of Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan)
  3. Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

Hydrated Fe{sup +} ions are produced in a laser-vaporization cluster source of a triple quadrupole mass spectrometer. The Fe{sup +}(H{sub 2}O){sub n} (n = 3–8) complexes are mass-selected and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region. Density functional theory (DFT) calculations are also carried out for analyzing the experimental IR spectra and for evaluating thermodynamic quantities of low-lying isomers. Solvation through H-bonding instead of direct coordination to Fe{sup +} is observed already at n = 3, indicating the completion of the first hydration shell with two H{sub 2}O molecules. Size dependent variations in the spectra for n = 5–7 provide evidence for the second-shell completion at n = 6, where a linearly coordinated Fe{sup +}(H{sub 2}O){sub 2} subunit is solvated with four H{sub 2}O molecules. Overall spectral features for n = 3–8 agree well with those predicted for 2-coordinated structures. DFT calculations predict that such 2-coordinated structures are lowest in energy for smaller n. However, 4-coordinated isomers are predicted to be more stable for n = 7 and 8; the energy ordering is in conflict with the IR spectroscopic observation. Examination of free energy as a function of temperature suggests that the ordering of the isomers at warmer temperatures can be different from the ordering near 0 K. For n = 7 and 8, the 4-coordinated isomers should be observed at low temperatures because they are lowest in enthalpy. Meanwhile, outer-shell waters in the 2-coordinated structures are bound less rigidly; their contribution to entropy is rather large. The 2-coordinated structures become abundant at warmer temperatures, owing to the entropy effect.

OSTI ID:
22413269
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 21; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English