skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system

Abstract

Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation inmore » film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.« less

Authors:
; ; ; ; ; ;  [1];  [2];  [3]
  1. Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2 (Canada)
  2. Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)
  3. Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada)
Publication Date:
OSTI Identifier:
22412498
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; ENERGY DEPENDENCE; FILM DOSIMETRY; KERMA; KEV RANGE 100-1000; RADIOLOGY; RESPONSE FUNCTIONS

Citation Formats

Tomic, Nada, E-mail: ntomic@roc.jgh.mcgill.ca, Quintero, Chrystian, Aldelaijan, Saad, Bekerat, Hamed, Liang, LiHeng, DeBlois, François, Devic, Slobodan, Whiting, Bruce R., and Seuntjens, Jan. Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system. United States: N. p., 2014. Web. doi:10.1118/1.4876295.
Tomic, Nada, E-mail: ntomic@roc.jgh.mcgill.ca, Quintero, Chrystian, Aldelaijan, Saad, Bekerat, Hamed, Liang, LiHeng, DeBlois, François, Devic, Slobodan, Whiting, Bruce R., & Seuntjens, Jan. Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system. United States. doi:10.1118/1.4876295.
Tomic, Nada, E-mail: ntomic@roc.jgh.mcgill.ca, Quintero, Chrystian, Aldelaijan, Saad, Bekerat, Hamed, Liang, LiHeng, DeBlois, François, Devic, Slobodan, Whiting, Bruce R., and Seuntjens, Jan. Sun . "Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system". United States. doi:10.1118/1.4876295.
@article{osti_22412498,
title = {Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system},
author = {Tomic, Nada, E-mail: ntomic@roc.jgh.mcgill.ca and Quintero, Chrystian and Aldelaijan, Saad and Bekerat, Hamed and Liang, LiHeng and DeBlois, François and Devic, Slobodan and Whiting, Bruce R. and Seuntjens, Jan},
abstractNote = {Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.},
doi = {10.1118/1.4876295},
journal = {Medical Physics},
number = 6,
volume = 41,
place = {United States},
year = {Sun Jun 15 00:00:00 EDT 2014},
month = {Sun Jun 15 00:00:00 EDT 2014}
}
  • Purpose: In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity inmore » scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was {+-}7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases.« less
  • The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10,more » and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose verification and quality assurance of compensator-based C-IMRT.« less
  • Purpose: The authors applied 2D reference dosimetry protocol for dose measurements using XR-QA radiochromic film model during diagnostic computed tomography (CT) examinations carried out on patients and humanoid Rando phantom. Methods: Response of XR-QA model GAFCHROMIC film reference dosimetry system was calibrated in terms of Air-Kerma in air. Four most commonly used CT protocols were selected on their CT scanner (GE Lightspeed VCT 64), covering three anatomical sites (head, chest, and abdomen). For each protocol, 25 patients ongoing planned diagnostic CT examination were recruited. Surface dose was measured using four or eight film strips taped on patients' skin and onmore » Rando phantom. Film pieces were scanned prior to and after irradiation using Epson Expression 10000XL document scanner. Optical reflectance of the unexposed film piece was subtracted from exposed one to obtain final net reflectance change, which is subsequently converted to dose using previously established calibration curves. Results: The authors' measurements show that body skin dose variation has a sinusoidal pattern along the scanning axis due to the helical movement of the x-ray tube, and a comb pattern for head dose measurements due to its axial movement. Results show that the mean skin dose at anterior position for patients is (51 {+-} 6) mGy, (29 {+-} 11) mGy, (45 {+-} 13) mGy and (38 {+-} 20) mGy for head, abdomen, angio Abdomen, and chest and abdomen protocol (UP position), respectively. The obtained experimental dose length products (DLP) show higher values than CT based DLP taken from the scanner console for body protocols, but lower values for the head protocol. Internal dose measurements inside the phantom's head indicate nonuniformity of dose distribution within scanned volume. Conclusions: In this work, the authors applied an Air-Kerma in air based radiochromic film reference dosimetry protocol for in vivo skin dose measurements. In this work, they employed green channel extracted from the scanned RGB image for dose measurements in the range from 0 to 200 mGy. Measured skin doses and corresponding DLPs were higher than DLPs provided by the CT scanner manufacturer as they were measured on patients' skin.« less
  • Purpose: This work investigates the energy response and dose-response curve determinations for XR-QA2 radiochromic film dosimetry system used for synchrotron radiation work and for quality assurance in diagnostic radiology, in the range of effective energies 18–46.5 keV. Methods: Pieces of XR-QA2 films were irradiated, in a plane transverse to the beam axis, with a monochromatic beam of energy in the range 18–40 keV at the ELETTRA synchrotron radiation facility (Trieste, Italy) and with a polychromatic beam from a laboratory x-ray tube operated at 80, 100, and 120 kV. The film calibration curve was expressed as air kerma (measured free-in-air withmore » an ionization chamber) versus the net optical reflectance change (netΔR) derived from the red channel of the RGB scanned film image. Four functional relationships (rational, linear exponential, power, and logarithm) were tested to evaluate the best curve for fitting the calibration data. The adequacy of the various fitting functions was tested by using the uncertainty analysis and by assessing the average of the absolute air kerma error calculated as the difference between calculated and delivered air kerma. The sensitivity of the film was evaluated as the ratio of the change in net reflectance to the corresponding air kerma. Results: The sensitivity of XR-QA2 films increased in the energy range 18–39 keV, with a maximum variation of about 170%, and decreased in the energy range 38–46.5 keV. The present results confirmed and extended previous findings by this and other groups, as regards the dose response of the radiochromic film XR-QA2 to monochromatic and polychromatic x-ray beams, respectively. Conclusions: The XR-QA2 radiochromic film response showed a strong dependence on beam energy for both monochromatic and polychromatic beams in the range of half value layer values from 0.55 to 6.1 mm Al and corresponding effective energies from 18 to 46.5 keV. In this range, the film response varied by 170%, from a minimum sensitivity of 0.0127 to a maximum sensitivity of 0.0219 at 10 mGy air kerma in air. The more suitable function for air kerma calibration of the XR-QA2 radiochromic film was the power function. A significant batch-to-batch variation, up to 55%, in film response at 120 kV (46.5 keV effective energy) was observed in comparison with published data.« less
  • Gafchromic XR-RV2 is a revised version of the obsolete Gafchromic XR-R-type radiochromic film. This article investigates the dose response, energy response, postexposure growth, and polarizing effects of this film after exposure to ionizing radiation in the diagnostic energy range. The effect of bit depth on scanning was also investigated. Films were scanned using an Epson Expression 10000XL document scanner or an X-Rite model 301 spot densitometer. Color channel analysis was performed. The film showed usable response in the air kerma range of 1-1000 cGy, although by 1500 cGy the film appeared saturated when using the red color channel on amore » document scanner. The film response varied by 11% between 60 and 96 kVp and 3.5% between 96 and 125 kVp for doses above 1 Gy. Postexposure growth was found to be approximately logarithmic and fairly stable after 24 h. Films stored under office lighting exhibited around twice the density growth compared with film stored in a dark environment. The film showed strong orientation dependence when scanned using a polarized light source. A 48 bit scan provided no increase in sensitivity over 24 bits. Gafchromic XR-RV2 film is a radiochromic film ideally suited for measurement of wide dose ranges at diagnostic energies. The energy dependence of this film limits its accuracy for dosimetry of unknown energy beams. For the document scanners used in this study a 24 bit scan was more than sufficient compared to a 48 bit scan. This is likely to be the case for most document scanners where electrical noise prevents higher bit depths from increasing the sensitivity of measurements.« less