skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Informatics in Radiation Oncology

Abstract

No abstract prepared.

Publication Date:
OSTI Identifier:
22412497
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 7; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; COMPUTERIZED SIMULATION; DECISION MAKING; DIAGNOSIS; ELECTROMAGNETIC RADIATION; NEOPLASMS; PLANNING; QUALITY ASSURANCE; RADIOTHERAPY; TOOLS

Citation Formats

NONE. Informatics in Radiation Oncology. United States: N. p., 2014. Web. doi:10.1118/1.4876695.
NONE. Informatics in Radiation Oncology. United States. doi:10.1118/1.4876695.
NONE. Tue . "Informatics in Radiation Oncology". United States. doi:10.1118/1.4876695.
@article{osti_22412497,
title = {Informatics in Radiation Oncology},
author = {NONE},
abstractNote = {No abstract prepared.},
doi = {10.1118/1.4876695},
journal = {Medical Physics},
number = 7,
volume = 41,
place = {United States},
year = {Tue Jul 15 00:00:00 EDT 2014},
month = {Tue Jul 15 00:00:00 EDT 2014}
}
  • The construction of databases and support software to enable routine and systematic aggregation, analysis and reporting of patient outcomes data is emerging as an important area. “How have results for our patients been affected by the improvements we have made in our practice and in the technologies we use?” To answer this type of fundamental question about the overall pattern of efficacy observed, it is necessary to systematically gather and analyze data on all patients treated within a clinic. Clinical trials answer, in great depth and detail, questions about outcomes for the subsets of patients enrolled in a given trial.more » However, routine aggregation and analysis of key treatment parameter data and outcomes information for all patients is necessary to recognize emergent patterns that would be of interest from a public health or practice perspective and could better inform design of clinical trials or the evolution of best practice principals. To address these questions, Radiation Oncology outcomes databases need to be constructed to enable combination essential data from a broad group of data types including: diagnosis and staging, dose volume histogram metrics, patient reported outcomes, toxicity metrics, performance status, treatment plan parameters, demographics, DICOM data and demographics. Developing viable solutions to automate aggregation and analysis of this data requires multidisciplinary efforts to define nomenclatures, modify clinical processes and develop software and database tools requires detailed understanding of both clinical and technical issues. This session will cover the developing area of Radiation Oncology Outcomes Informatics. Learning Objectives: Audience will be able to speak to the technical requirements (software, database, web services) which must be considered in designing an outcomes database. Audience will be able to understand the content and the role of patient reported outcomes as compared to traditional toxicity measures. Audience will be understand approaches, clinical process changes, consensus building efforts and standardizations which must be addressed to succeed in a multi-disciplinary effort to aggregate data for all patients. Audience will be able to discuss technical and process issues related to pooling data among institutions in the context of collaborative studies among the presenting institutions.« less
  • Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) inmore » 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.« less
  • Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less
  • Purpose: To investigate pelvic insufficiency fractures (IF) after definitive pelvic radiation therapy for early-stage uterine cervical cancer, by analyzing subjects of a prospective, multi-institutional study. Materials and Methods: Between September 2004 and July 2007, 59 eligible patients were analyzed. The median age was 73 years (range, 37-84 years). The International Federation of Gynecologic Oncology and Obstetrics stages were Ib1 in 35, IIa in 12, and IIb in 12 patients. Patients were treated with the constant method, which consisted of whole-pelvic external-beam radiation therapy of 50 Gy/25 fractions and high-dose-rate intracavitary brachytherapy of 24 Gy/4 fractions without chemotherapy. After radiation therapymore » the patients were evaluated by both pelvic CT and pelvic MRI at 3, 6, 12, 18, and 24 months. Diagnosis of IF was made when the patients had both CT and MRI findings, neither recurrent tumor lesions nor traumatic histories. The CT findings of IF were defined as fracture lines or sclerotic linear changes in the bones, and MRI findings of IF were defined as signal intensity changes in the bones, both on T1- and T2-weighted images. Results: The median follow-up was 24 months. The 2-year pelvic IF cumulative occurrence rate was 36.9% (21 patients). Using Common Terminology Criteria for Adverse Events version 3.0, grade 1, 2, and 3 IF were seen in 12 (21%), 6 (10%), and 3 patients (5%), respectively. Sixteen patients had multiple fractures, so IF were identified at 44 sites. The pelvic IF were frequently seen at the sacroileal joints (32 sites, 72%). Nine patients complained of pain. All patients' pains were palliated by rest or non-narcotic analgesic drugs. Higher age (>70 years) and low body weight (<50 kg) were thought to be risk factors for pelvic IF (P=.007 and P=.013, Cox hazard test). Conclusions: Cervical cancer patients with higher age and low body weight may be at some risk for the development of pelvic IF after pelvic radiation therapy.« less
  • In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective ofmore » relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.« less