skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective deuterium ion acceleration using the Vulcan petawatt laser

Abstract

We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

Authors:
 [1];  [2];  [3]; ; ; ; ;  [4]; ;  [5]; ;  [1]; ;  [6]; ;  [7];  [5];  [8];  [9];  [4] more »;  [10];  [4];  [11];  [12] « less
  1. Laboratoire pour l'Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France)
  2. (United States)
  3. Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States)
  4. Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)
  5. Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom)
  6. Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany)
  7. The John Adams Institute, Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom)
  8. (United Kingdom)
  9. Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)
  10. (Germany)
  11. (Czech Republic)
  12. Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States)
Publication Date:
OSTI Identifier:
22410330
Resource Type:
Journal Article
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1070-664X
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ACCELERATION; CRYOGENIC FLUIDS; DEUTERIUM IONS; EFFICIENCY; ENERGY CONVERSION; HEAVY WATER; HYDROCARBONS; ION BEAMS; LASER TARGETS; LASERS; MEV RANGE; PETAWATT POWER RANGE; PULSES; WATER VAPOR

Citation Formats

Krygier, A. G., Physics Department, The Ohio State University, Columbus, Ohio 43210, Morrison, J. T., Kar, S., E-mail: s.kar@qub.ac.uk, Ahmed, H., Alejo, A., Green, A., Jung, D., Clarke, R., Notley, M., Fuchs, J., Vassura, L., Kleinschmidt, A., Roth, M., Najmudin, Z., Nakamura, H., Norreys, P., Department of Physics, University of Oxford, Oxford OX1 3PU, Oliver, M., Zepf, M., Helmholtz Institute Jena, D-07743 Jena, Borghesi, M., Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague, and Freeman, R. R. Selective deuterium ion acceleration using the Vulcan petawatt laser. United States: N. p., 2015. Web. doi:10.1063/1.4919618.
Krygier, A. G., Physics Department, The Ohio State University, Columbus, Ohio 43210, Morrison, J. T., Kar, S., E-mail: s.kar@qub.ac.uk, Ahmed, H., Alejo, A., Green, A., Jung, D., Clarke, R., Notley, M., Fuchs, J., Vassura, L., Kleinschmidt, A., Roth, M., Najmudin, Z., Nakamura, H., Norreys, P., Department of Physics, University of Oxford, Oxford OX1 3PU, Oliver, M., Zepf, M., Helmholtz Institute Jena, D-07743 Jena, Borghesi, M., Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague, & Freeman, R. R. Selective deuterium ion acceleration using the Vulcan petawatt laser. United States. doi:10.1063/1.4919618.
Krygier, A. G., Physics Department, The Ohio State University, Columbus, Ohio 43210, Morrison, J. T., Kar, S., E-mail: s.kar@qub.ac.uk, Ahmed, H., Alejo, A., Green, A., Jung, D., Clarke, R., Notley, M., Fuchs, J., Vassura, L., Kleinschmidt, A., Roth, M., Najmudin, Z., Nakamura, H., Norreys, P., Department of Physics, University of Oxford, Oxford OX1 3PU, Oliver, M., Zepf, M., Helmholtz Institute Jena, D-07743 Jena, Borghesi, M., Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague, and Freeman, R. R. Fri . "Selective deuterium ion acceleration using the Vulcan petawatt laser". United States. doi:10.1063/1.4919618.
@article{osti_22410330,
title = {Selective deuterium ion acceleration using the Vulcan petawatt laser},
author = {Krygier, A. G. and Physics Department, The Ohio State University, Columbus, Ohio 43210 and Morrison, J. T. and Kar, S., E-mail: s.kar@qub.ac.uk and Ahmed, H. and Alejo, A. and Green, A. and Jung, D. and Clarke, R. and Notley, M. and Fuchs, J. and Vassura, L. and Kleinschmidt, A. and Roth, M. and Najmudin, Z. and Nakamura, H. and Norreys, P. and Department of Physics, University of Oxford, Oxford OX1 3PU and Oliver, M. and Zepf, M. and Helmholtz Institute Jena, D-07743 Jena and Borghesi, M. and Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague and Freeman, R. R.},
abstractNote = {We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.},
doi = {10.1063/1.4919618},
journal = {Physics of Plasmas},
issn = {1070-664X},
number = 5,
volume = 22,
place = {United States},
year = {2015},
month = {5}
}