skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and composition of iron nanoparticles synthesized using a novel anionic-element complex

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4918781· OSTI ID:22410088
; ;  [1]
  1. Toyota Research Institute of North America, 1555 Woodridge Ave., Ann Arbor, Michigan 48105 (United States)

We use a novel solution-based disassociation synthesis scheme of the ionic complex Fe(LiBH{sub 4}){sub 2} to form Fe nanoparticles. The complex was formed initially using a gentle mechanochemical process, and the Fe nanoparticles emerged after 4 h of ball milling in an air-free environment. Rietveld refinement of x-ray diffraction measurements in an air-free sample holder identified a Im3{sup ¯}m α-Fe phase. A room temperature Mössbauer spectrum of the sample presented a six-line spectrum unique to Fe{sup 0} metal, and the Fe nanoparticles were extremely well crystallized. Magnetometry results presented a reduced saturation magnetization (e.g., M{sub s}∼ 85 emu/g at 50 K) that had a Bloch-like T{sup 2} temperature dependence, consistent with a gap in the magnon fluctuation spectrum due to finite-size effects. The Fe nanoparticles were magnetically soft, with a coercivity ranging from ∼10 to 20 mT with decreasing temperature from 350 K.

OSTI ID:
22410088
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English