skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept

Abstract

Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7more » ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.« less

Authors:
; ;  [1];  [2]; ;  [3]
  1. ARTORG Center for Biomedical Engineering Research, University of Bern, Bern 3010 (Switzerland)
  2. Berne University of Applied Sciences, HuCE OptoLab, 2501 (Switzerland)
  3. Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010 (Switzerland)
Publication Date:
OSTI Identifier:
22409868
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; EXTERNAL BEAM RADIATION THERAPY; EYES; NEOPLASMS; SWINE; TOMOGRAPHY

Citation Formats

Rüegsegger, Michael B., Steiner, Patrick, Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch, Geiser, Dominik, Pica, Alessia, and Aebersold, Daniel M. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept. United States: N. p., 2014. Web. doi:10.1118/1.4885975.
Rüegsegger, Michael B., Steiner, Patrick, Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch, Geiser, Dominik, Pica, Alessia, & Aebersold, Daniel M. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept. United States. doi:10.1118/1.4885975.
Rüegsegger, Michael B., Steiner, Patrick, Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch, Geiser, Dominik, Pica, Alessia, and Aebersold, Daniel M. Fri . "Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept". United States. doi:10.1118/1.4885975.
@article{osti_22409868,
title = {Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept},
author = {Rüegsegger, Michael B. and Steiner, Patrick and Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch and Geiser, Dominik and Pica, Alessia and Aebersold, Daniel M.},
abstractNote = {Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.},
doi = {10.1118/1.4885975},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • Purpose: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. Methods and Materials: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3Dmore » statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. Results: Cross-validation revealed a dice similarity of 95% {+-} 2% for the sclera and cornea and 91% {+-} 2% for the lens. Overall, mean segmentation error was found to be 0.3 {+-} 0.1 mm. Average segmentation time was 14 {+-} 2 s on a standard personal computer. Conclusions: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.« less
  • Purpose: To evaluate, in a gynecologic cancer setting, changes in bowel position, dose-volume parameters, and biological indices that arise between full-bladder (FB) and empty-bladder (EB) treatment situations; and to evaluate, using cone beam computed tomography (CT), the validity of FB treatment presumption. Methods and Materials: Seventeen gynecologic cancer patients were retrospectively analyzed. Empty-bladder and FB CTs were obtained. Full-bladder CTs were used for planning and dose optimization. Patients were given FB instructions for treatment. For the study purpose, bowel was contoured on the EB CTs for all patients. Bowel position and volume changes between FB and EB states were determined.more » Full-bladder plans were applied on EB CTs for determining bowel dose-volume changes in EB state. Biological indices (generalized equivalent uniform dose and normal tissue complication probability) were calculated and compared between FB and EB. Weekly cone beam CT data were available in 6 patients to assess bladder volume at treatment. Results: Average (±SD) planned bladder volume was 299.7 ± 68.5 cm{sup 3}. Median bowel shift in the craniocaudal direction between FB and EB was 12.5 mm (range, 3-30 mm), and corresponding increase in exposed bowel volume was 151.3 cm{sup 3} (range, 74.3-251.4 cm{sup 3}). Absolute bowel volumes receiving 45 Gy were higher for EB compared with FB (mean 328.0 ± 174.8 vs 176.0 ± 87.5 cm{sup 3}; P=.0038). Bowel normal tissue complication probability increased 1.5× to 23.5× when FB planned treatments were applied in the EB state. For the study, the mean percentage value of relative bladder volume at treatment was 32%. Conclusions: Full-bladder planning does not necessarily translate into FB treatments, with a patient tendency toward EB. Given the uncertainty in daily control over bladder volume for treatment, we strongly recommend a “planning-at-risk volume bowel” (PRV{sub B}owel) concept to account for bowel motion between FB and EB that can be tailored for the individual patient.« less
  • Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less
  • Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less