skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments

Abstract

Purpose: To evaluate the accuracy of skin dose determination for composite multibeam 3D conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) treatments using optically stimulated luminescent dosimeters (OSLDs) and Eclipse treatment planning system. Methods: Surface doses measured by OSLDs in the buildup region for open field 6 MV beams, either perpendicular or oblique to the surface, were evaluated by comparing against dose measured by Markus Parallel Plate (PP) chamber, surface diodes, and calculated by Monte Carlo simulations. The accuracy of percent depth dose (PDD) calculation in the buildup region from the authors’ Eclipse system (Version 10), which was precisely commissioned in the buildup region and was used with 1 mm calculation grid, was also evaluated by comparing to PP chamber measurements and Monte Carlo simulations. Finally, an anthropomorphic pelvic phantom was CT scanned with OSLDs in place at three locations. A planning target volume (PTV) was defined that extended close to the surface. Both an 8 beam 3DCRT and IMRT plan were generated in Eclipse. OSLDs were placed at the CT scanned reference locations to measure the skin doses and were compared to diode measurements and Eclipse calculations. Efforts were made to ensure that the dose comparison wasmore » done at the effective measurement points of each detector and corresponding locations in CT images. Results: The depth of the effective measurement point is 0.8 mm for OSLD when used in the buildup region in a 6 MV beam and is 0.7 mm for the authors’ surface diode. OSLDs and Eclipse system both agree well with Monte Carlo and/or Markus PP ion chamber and/or diode in buildup regions in 6 MV beams with normal or oblique incidence and across different field sizes. For the multiple beam 3DCRT plan and IMRT plans, the differences between OSLDs and Eclipse calculations on the surface of the anthropomorphic phantom were within 3% and distance-to-agreement less than 0.3 mm. Conclusions: The authors’ experiment showed that OSLD is an accurate dosimeter for skin dose measurements in complex 3DCRT or IMRT plans. It also showed that an Eclipse system with accurate commissioning of the data in the buildup region and 1 mm calculation grid can calculate surface doses with high accuracy and has a potential to replacein vivo measurements.« less

Authors:
 [1];  [2]
  1. Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 (United States)
  2. Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and Department of Radiation Oncology, Children's Hospital Los Angeles, Los Angeles, California 90027 (United States)
Publication Date:
OSTI Identifier:
22409575
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; CAT SCANNING; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; DEPTH DOSE DISTRIBUTIONS; LUMINESCENT DOSEMETERS; MONTE CARLO METHOD; PHANTOMS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SKIN

Citation Formats

Zhuang, Audrey H., E-mail: hzhuang@usc.edu, and Olch, Arthur J. Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments. United States: N. p., 2014. Web. doi:10.1118/1.4890795.
Zhuang, Audrey H., E-mail: hzhuang@usc.edu, & Olch, Arthur J. Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments. United States. doi:10.1118/1.4890795.
Zhuang, Audrey H., E-mail: hzhuang@usc.edu, and Olch, Arthur J. Fri . "Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments". United States. doi:10.1118/1.4890795.
@article{osti_22409575,
title = {Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments},
author = {Zhuang, Audrey H., E-mail: hzhuang@usc.edu and Olch, Arthur J.},
abstractNote = {Purpose: To evaluate the accuracy of skin dose determination for composite multibeam 3D conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) treatments using optically stimulated luminescent dosimeters (OSLDs) and Eclipse treatment planning system. Methods: Surface doses measured by OSLDs in the buildup region for open field 6 MV beams, either perpendicular or oblique to the surface, were evaluated by comparing against dose measured by Markus Parallel Plate (PP) chamber, surface diodes, and calculated by Monte Carlo simulations. The accuracy of percent depth dose (PDD) calculation in the buildup region from the authors’ Eclipse system (Version 10), which was precisely commissioned in the buildup region and was used with 1 mm calculation grid, was also evaluated by comparing to PP chamber measurements and Monte Carlo simulations. Finally, an anthropomorphic pelvic phantom was CT scanned with OSLDs in place at three locations. A planning target volume (PTV) was defined that extended close to the surface. Both an 8 beam 3DCRT and IMRT plan were generated in Eclipse. OSLDs were placed at the CT scanned reference locations to measure the skin doses and were compared to diode measurements and Eclipse calculations. Efforts were made to ensure that the dose comparison was done at the effective measurement points of each detector and corresponding locations in CT images. Results: The depth of the effective measurement point is 0.8 mm for OSLD when used in the buildup region in a 6 MV beam and is 0.7 mm for the authors’ surface diode. OSLDs and Eclipse system both agree well with Monte Carlo and/or Markus PP ion chamber and/or diode in buildup regions in 6 MV beams with normal or oblique incidence and across different field sizes. For the multiple beam 3DCRT plan and IMRT plans, the differences between OSLDs and Eclipse calculations on the surface of the anthropomorphic phantom were within 3% and distance-to-agreement less than 0.3 mm. Conclusions: The authors’ experiment showed that OSLD is an accurate dosimeter for skin dose measurements in complex 3DCRT or IMRT plans. It also showed that an Eclipse system with accurate commissioning of the data in the buildup region and 1 mm calculation grid can calculate surface doses with high accuracy and has a potential to replacein vivo measurements.},
doi = {10.1118/1.4890795},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.« less
  • Dose verification using diodes has been proposed and used for intensity modulated radiation therapy (IMRT) treatments. We have previously evaluated diode response for IMRT deliveries planned with the Eclipse/Helios treatment planning system. The Pinnacle treatment planning system generates plans that are delivered in a different fashion than Eclipse. Whereas the Eclipse-generated segments are delivered in organized progression from one side of each field to the other, Pinnacle-generated segments are delivered in a much more randomized fashion to different areas within the field. This makes diode measurements at a point more challenging because the diode may be exposed fully or partiallymore » to multiple small segments during one single field's treatment as opposed to being exposed to very few segments scanning across the diode during an Eclipse-generated delivery. We have evaluated in vivo dosimetry for Pinnacle-generated IMRT plans and characterized the response of the diode to various size segments on phantom. We present results of patient measurements on approximately 300 fields, which show that 76% of measurements agree to within 10% of the treatment-plan generated calculated doses. Of the other 24%, about 11% are within 15% of the calculated dose. Comparison of these with phantom measurements indicates that many of the discrepancies are due to diode positioning on patients and increased diode response at short source-to-surface distances (SSDs), with the remainder attributable to other factors such as segment size and partial irradiation of the diode.« less
  • Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system.more » Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.« less
  • Purpose: Inaccuracies in out-of-field calculations could lead to underestimation of dose to organs-at-risk. This study evaluates the dose calculation accuracy of a model-based calculation algorithm at points outside the primary treatment field for an intensity modulated radiation therapy (IMRT) plan using experimental measurements. Methods: The treatment planning system investigated is Varian Eclipse V.10 with Analytical Anisotropic Algorithm (AAA). The IMRT fields investigated are from real patient treatment plans. The doses from a dynamic (DMLC) IMRT brain plan were calculated and compared with measured doses at locations outside the primary treatment fields. Measurements were performed with a MatriXX system (2-D chambermore » array) placed in solid water. All fields were set vertically incident on the phantom and were 9 cm × 6 cm or smaller. The dose was normalized to the central axis for points up to 15 cm off isocenter. The comparisons were performed at depths of 2, 10, 15, and 20 cm Results: The measurements have shown that AAA calculations underestimate doses at points outside the primary treatment field. The underestimation occurs at 2 cm depth and decreases down to a factor of 2 as depth increases to 20 cm. In low dose (<2% of target dose) regions outside the primary fields the local dose underestimations can be >200% compared to measured doses. Relative to the plan target dose, the measured doses to points outside the field were less than 1% at shallow depths and less than 2% at greater depths. Conclusion: Compared to measurements, the AAA algorithm underestimated the dose at points outside the treatment field with the greatest differences observed at shallow depths. Despite large local dose uncertainties predicted by the treatment planning system, the impact of these uncertainties is expected to be insignificant as doses at these points were less than 1-2% of the prescribed treatment dose.« less
  • Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4more » cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.« less