skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning

Abstract

Purpose: To describe and evaluate a novel system for generalized Real-Time Interactive Planning (RTIP) applied to head and neck (H and N) VMAT. Methods: The clinician interactively manipulates dose distributions using DVHs, isodoses, or rate of dose fall-off, which may be subjected to user-defined constraints. Dose is calculated using a fast Achievable Dose Estimate (ADE) algorithm, which simulates the limits of what can be achieved during treatment. After each manipulation contributing fluence elements are modified and the dose distribution updates in effectively real-time. For H and N VMAT planning, structure sets for 11 patients were imported into RTIP. Each dose distribution was interactively modified to minimize OAR dose while constraining target DVHs. The resulting RTIP DVHs were transferred to the Eclipse™ VMAT optimizer, and conventional VMAT optimization was performed. Results: Dose calculation and update times for the ADE algorithm ranged from 2.4 to 22.6 milliseconds, thus facilitating effectively real-time manipulation of dose distributions. For each of the 11 H and N VMAT cases, the RTIP process took ∼2–10 minutes. All RTIP plans exhibited acceptable PTV coverage, mean dose, and max dose. 10 of 11 RTIP plans achieved substantially improved sparing of one or more OARs without compromising dose to targetsmore » or other OARs. Importantly, 10 of the 11 RTIP plans required only one or two post-RTIP optimizations. Conclusions: RTIP is a novel system for manipulating and updating achievable dose distributions in real-time. H and N VMAT plans generated using RTIP demonstrate improved OAR sparing and planning efficiency. Disclosures: One author has a commercial interest in the presented materials.« less

Authors:
;  [1];  [2]
  1. BC Cancer Agency - Vancouver Island Centre (Canada)
  2. Physics and Astronomy, University of British Columbia (Canada)
Publication Date:
OSTI Identifier:
22409516
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALGORITHMS; HEAD; NECK; OPTIMIZATION; PATIENTS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES

Citation Formats

Matthews, Q, Mestrovic, A, and Otto, K. Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning. United States: N. p., 2014. Web. doi:10.1118/1.4894986.
Matthews, Q, Mestrovic, A, & Otto, K. Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning. United States. doi:10.1118/1.4894986.
Matthews, Q, Mestrovic, A, and Otto, K. Fri . "Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning". United States. doi:10.1118/1.4894986.
@article{osti_22409516,
title = {Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning},
author = {Matthews, Q and Mestrovic, A and Otto, K},
abstractNote = {Purpose: To describe and evaluate a novel system for generalized Real-Time Interactive Planning (RTIP) applied to head and neck (H and N) VMAT. Methods: The clinician interactively manipulates dose distributions using DVHs, isodoses, or rate of dose fall-off, which may be subjected to user-defined constraints. Dose is calculated using a fast Achievable Dose Estimate (ADE) algorithm, which simulates the limits of what can be achieved during treatment. After each manipulation contributing fluence elements are modified and the dose distribution updates in effectively real-time. For H and N VMAT planning, structure sets for 11 patients were imported into RTIP. Each dose distribution was interactively modified to minimize OAR dose while constraining target DVHs. The resulting RTIP DVHs were transferred to the Eclipse™ VMAT optimizer, and conventional VMAT optimization was performed. Results: Dose calculation and update times for the ADE algorithm ranged from 2.4 to 22.6 milliseconds, thus facilitating effectively real-time manipulation of dose distributions. For each of the 11 H and N VMAT cases, the RTIP process took ∼2–10 minutes. All RTIP plans exhibited acceptable PTV coverage, mean dose, and max dose. 10 of 11 RTIP plans achieved substantially improved sparing of one or more OARs without compromising dose to targets or other OARs. Importantly, 10 of the 11 RTIP plans required only one or two post-RTIP optimizations. Conclusions: RTIP is a novel system for manipulating and updating achievable dose distributions in real-time. H and N VMAT plans generated using RTIP demonstrate improved OAR sparing and planning efficiency. Disclosures: One author has a commercial interest in the presented materials.},
doi = {10.1118/1.4894986},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • Purpose: To develop treatment planning workflow for rapid radiotherapy delivered with very-high energy electron (VHEE) scanning beam. Methods: VHEE radiotherapy treatment planning was performed by linking Monte Carlo (MC) dose calculations with inverse optimization in a research version of RayStation. In order to study a number of treatment parameters, a Matlab graphical user interface (GUI) for calculation of VHEE beamlet dose was developed. Through the GUI, EGSnrc MC simulations were run for a number of beam energies, number of beams, beamlet spot and grid sizes, and machine bore sizes. VHEE plans for a pediatric patient with a 4.3 cm{sup 3}more » brain target optimized with spot-scanning algorithm in RayStation were compared to the clinically delivered 6 MV VMAT plan. Results and Discussion: VHEE beam energy had the largest effect on the quality of dose distributions. For the same target dose, the mean doses to critical organs decreased by 10–15% when planned with 100 MeV compared to 60 MeV. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams. While beamlet spacing and bore size had a small effect on VHEE dose distributions, 0.1-3mm beamlet sizes resulted in identical dose distributions. Critical organ doses were by up to 70% lower in the best VHEE plan compared to the clinical 6 MV VMAT plan. Conclusions: We have developed a GUI for MC beamlet generation for treatment planning of VHEE radiotherapy. We have demonstrated that pediatric VHEE plans resulted in significant critical organ dose sparing compared to the clinical VMAT plan.« less
  • Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less
  • Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20more » mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm.« less
  • MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less
  • The value of computed tomography (CT) in medical imaging is reflected in its' increased use and availability since the early 1990's; however, given CT's relatively larger exposures (vs. planar x-ray) greater care must be taken to ensure that CT procedures are optimised in terms of providing the smallest dose possible while maintaining sufficient diagnostic image quality. The development of CT Diagnostic Reference Levels (DRLs) supports this process. DRLs have been suggested/supported by international/national bodies since the early 1990's and widely adopted elsewhere, but not on a national basis in Canada. Essentially, CT DRLs provide guidance on what is considered goodmore » practice for common CT exams, but require a representative sample of CT examination data to make any recommendations. Canada's National CT Survey project, in collaboration with provincial/territorial authorities, has collected a large national sample of CT practice data for 7 common examinations (with associated clinical indications) of both adult and pediatric patients. Following completion of data entry into a common database, a survey summary report and recommendations will be made on CT DRLs from this data. It is hoped that these can then be used by local regions to promote CT practice optimisation and support any dose reduction initiatives.« less