skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies

Abstract

Children diagnosed with central nervous system (CNS) malignancies often receive radiotherapy, which can cause radiogenic late effects. In order to identify and reduce the risk of these late effects, we must understand the radiation doses that these children receive. Modern treatment planning systems accurately estimate the absorbed dose within the treatment fields but poorly estimate the dose outside them. The purpose of our study was to measure the out-of-field dose for children receiving localized radiotherapy for CNS cancer and apply an analytical model for estimating dose as a function of distance from the field edge. Radiation fields designed for a 12-year-old boy treated in our clinic were applied to an anthropomorphic phantom containing more than 200 thermoluminescent dosimeters. A double-Gaussian function of absorbed dose versus distance from the field edge (i.e., 50% isodose line) was applied, and parameters were allowed to vary and were fit to the model by minimizing the root mean square deviation, RMSD. The fitted model accurately predicted the dose from distances of 4 cm to 50 cm (RMSD = 0.54 cGy/Gy), but the model was not useful in estimating dose for distances less than 4 cm because of wide variation in measured dose, and the double-Gaussianmore » model failed by systematically underestimating the dose beyond 50 cm. In conclusion, the double-Gaussian model may be applicable for points at distances from the field edge between 4 cm and 50 cm, where most children's radiosensitive tissues are located, but for points beyond 50 cm, an improvement should be investigated.« less

Authors:
; ; ; ; ; ;  [1]
  1. Department of Radiation Oncology, American University of Beirut Medical Center, Beirut (Lebanon)
Publication Date:
OSTI Identifier:
22407715
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ABSORBED RADIATION DOSES; CENTRAL NERVOUS SYSTEM; CHILDREN; DELAYED RADIATION EFFECTS; DIAGNOSIS; DOSIMETRY; NEOPLASMS; PHANTOMS; PLANNING; RADIOTHERAPY; THERMOLUMINESCENT DOSEMETERS

Citation Formats

Taddei, P J, Tannous, J, Nabha, R, Feghali, J A, Ayoub, Z, Jalbout, W, and Youssef, B. Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies. United States: N. p., 2014. Web. doi:10.1118/1.4894959.
Taddei, P J, Tannous, J, Nabha, R, Feghali, J A, Ayoub, Z, Jalbout, W, & Youssef, B. Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies. United States. doi:10.1118/1.4894959.
Taddei, P J, Tannous, J, Nabha, R, Feghali, J A, Ayoub, Z, Jalbout, W, and Youssef, B. Fri . "Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies". United States. doi:10.1118/1.4894959.
@article{osti_22407715,
title = {Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies},
author = {Taddei, P J and Tannous, J and Nabha, R and Feghali, J A and Ayoub, Z and Jalbout, W and Youssef, B},
abstractNote = {Children diagnosed with central nervous system (CNS) malignancies often receive radiotherapy, which can cause radiogenic late effects. In order to identify and reduce the risk of these late effects, we must understand the radiation doses that these children receive. Modern treatment planning systems accurately estimate the absorbed dose within the treatment fields but poorly estimate the dose outside them. The purpose of our study was to measure the out-of-field dose for children receiving localized radiotherapy for CNS cancer and apply an analytical model for estimating dose as a function of distance from the field edge. Radiation fields designed for a 12-year-old boy treated in our clinic were applied to an anthropomorphic phantom containing more than 200 thermoluminescent dosimeters. A double-Gaussian function of absorbed dose versus distance from the field edge (i.e., 50% isodose line) was applied, and parameters were allowed to vary and were fit to the model by minimizing the root mean square deviation, RMSD. The fitted model accurately predicted the dose from distances of 4 cm to 50 cm (RMSD = 0.54 cGy/Gy), but the model was not useful in estimating dose for distances less than 4 cm because of wide variation in measured dose, and the double-Gaussian model failed by systematically underestimating the dose beyond 50 cm. In conclusion, the double-Gaussian model may be applicable for points at distances from the field edge between 4 cm and 50 cm, where most children's radiosensitive tissues are located, but for points beyond 50 cm, an improvement should be investigated.},
doi = {10.1118/1.4894959},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changingmore » the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.« less
  • Purpose: Lung SABR patients are treated using Volumetrically Modulated Arc Therapy (VMAT), utilizing 2 arcs with Conebeam CT (CBCT) image-guidance prior to each arc. Intra-fraction imaging can prolong treatment time (up to 20%), and the aim of this study is to determine if it is necessary. Methods: We utilize an in-house abdominal compression device to minimize respiratory motion, 4DCT to define the ITV, a 5 mm PTV margin and a 2–3 mm PRV margin. We treated 23 patients with VMAT, fifteen were treated to 48 Gy in 4 fractions, while eight were treated with up to 60 Gy in 8more » fractions. Intrafraction motion was assessed by the translational errors recorded for the second CBCT. Results: There was no significant difference (t-test, p=0.93) in the intra-fraction motion between the patients treated with 4 and 8 fractions, or between the absolute translations in each direction (ANOVA, p=0.17). All 124 intra-fraction CBCT images were analysed and 95% remained localized within the 5 mm PTV margin The mean magnitude of the vector displacement was 1.8 mm. Conclusions: For patients localized with an abdominal compression device, the intrafraction CBCT image may not be necessary, if it is only the tumor coverage that is of concern, as the patients are typically well within the 5 mm PTV margin. On the other hand, if there is a structure with a smaller PRV margin, an intrafraction CBCT is recommended to ensure that the dose limit for the organ at risk is not exceeded.« less
  • Purpose: Proton beam therapy (PBT) potentially allows for improved sparing of normal tissues, hopefully leading to decreased late side effects in children. Using a national registry, we sought to perform a patterns-of-care analysis for children receiving PBT for primary malignancies of the central nervous system (CNS). Methods and Materials: Using the National Cancer Data Base, we identified pediatric patients with primary CNS malignancies that were diagnosed between 2004 and 2012. We used a standard t test for comparison of means and χ{sup 2} testing to identify differences in demographic and clinical characteristics. Univariate and multivariate logistical regression was applied tomore » identify predictors of PBT use. Results: We identified 4637 pediatric patients receiving radiation therapy from 2004 to 2012, including a subset of 267 patients treated with PBT. We found that PBT use increased with time from <1% in 2004 to 15% in 2012. In multivariate logistical regression, we found the following to be predictors of receipt of PBT: private insurance, the highest income bracket, younger age, living in a metropolitan area, and residing >200 miles from a radiation treatment facility (P<.05). Conclusions: We noted the proportion of children receiving PBT to be significantly increasing over time from <1% to 15% from 2004 to 2012. We also observed important disparities in receipt of PBT based on socioeconomic status. Children from higher-income households and with private insurance were more likely to use this expensive technology. As we continue to demonstrate the potential benefits of PBT in children, efforts are needed to expand the accessibility of PBT for children of all socioeconomic backgrounds and regions of the country.« less
  • The goal of this project was to quantify the over-response/under-response of the Delta4 diodes for Helical Tomotherapy plans on extreme target volume sizes. A custom Delta4 phantom quarter with a hole to insert an ionisation chamber (IC) close to the center of the phantom have been used to acquire simultaneous IC and diodes absolute dose measurements. Eight plans for different target volumes were created from 20cm to 1cm diameter. Diodes dose measurements in the target were compared with IC measurement, to quantify absolute dose accuracy. IC measurements show a good agreement with planned dose (±2%). Diode measurements demonstrate a goodmore » agreement with IC for regular target size of 5 and 10cm (0 to 1%). For larger targets, an over-response is observed for FW 25mm and 10mm (2 to 3%). for small target of 1cm diameter, a major under-response is observed for FW 25mm and 10mm (−8 and −36%). The over-response could to be due to the extra amount of scattered radiation and the opposite for under-response. Although this scatter hypothesis still has to be proven, early testing demonstrates an over-response of 40%/20% of the central diodes compare to IC when an open helical rotational beam is delivered 75mm/25mm away from the center of the phantom. These results are in agreement with the real patient Delta4 DQA results at our center.« less
  • Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can havemore » on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm{sup 2}, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.« less