skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

Abstract

Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two daysmore » of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.« less

Authors:
; ;  [1];  [2]; ; ;  [1]
  1. Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada)
  2. (Canada)
Publication Date:
OSTI Identifier:
22407708
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; ANALYTICAL SOLUTION; EDUCATION; LECTURES; LINEAR ACCELERATORS; PHOTON BEAMS

Citation Formats

Carlone, Marco, Harnett, Nicole, Jaffray, David, Department of Radiation Oncology, University of Toronto, Toronto, ON, Norrlinger, Bern, Prooijen, Monique van, and Milne, Emily. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment. United States: N. p., 2014. Web. doi:10.1118/1.4894952.
Carlone, Marco, Harnett, Nicole, Jaffray, David, Department of Radiation Oncology, University of Toronto, Toronto, ON, Norrlinger, Bern, Prooijen, Monique van, & Milne, Emily. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment. United States. doi:10.1118/1.4894952.
Carlone, Marco, Harnett, Nicole, Jaffray, David, Department of Radiation Oncology, University of Toronto, Toronto, ON, Norrlinger, Bern, Prooijen, Monique van, and Milne, Emily. Fri . "Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment". United States. doi:10.1118/1.4894952.
@article{osti_22407708,
title = {Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment},
author = {Carlone, Marco and Harnett, Nicole and Jaffray, David and Department of Radiation Oncology, University of Toronto, Toronto, ON and Norrlinger, Bern and Prooijen, Monique van and Milne, Emily},
abstractNote = {Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.},
doi = {10.1118/1.4894952},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • Purpose: To develop and validate a computational method to simulate craniocaudal respiratory motion in a VMAT treatment plan. Methods: Three 4DCTs of the QUASAR respiratory motion phantom were acquired with a 2cm water-density spherical tumour embedded in cedar to simulate lung. The phantom was oscillating sinusoidally with an amplitude of 2cm and periods of 3, 4, and 5 seconds. An ITV was contoured and 5mm PTV margin was added. High and a low modulation factor VMAT plans were created for each scan. An in-house program was developed to simulate respiratory motion in the treatment plans by shifting the MLC leafmore » positions relative to the phantom. Each plan was delivered to the phantom and the dose was measured using Gafchromic film. The measured and calculated plans were compared using an absolute dose gamma analysis (3%/3mm). Results: The average gamma pass rate for the low modulation plan and high modulation plans were 91.1% and 51.4% respectively. The difference between the high and low modulation plans gamma pass rates is likely related to the different sampling frequency of the respiratory curve and the higher MLC leaf speeds in the high modulation plan. A high modulation plan has a slower gantry speed and therefore samples the breathing cycle at a coarser frequency leading to inaccuracies between the measured and planned doses. Conclusion: A simple program, including a novel method for increasing sampling frequency beyond the control point frequency, has been developed to simulate respiratory motion in VMAT plans by shifting the MLC leaf positions.« less
  • Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients,more » yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.« less
  • The accuracy of electron backscatter calculations at megavoltage energies is important for many medical physics applications. In this study, EGSnrc calculations of megavoltage electron backscatter (1–22 MeV) are performed and compared to the data from 21 experiments published between 1954 and 1993 for 25 single elements with atomic numbers from 3 to 92. Typical experimental uncertainties are 15%. For EGSnrc simulations, an ideal detector is assumed, and the most accurate electron physics options are employed, for a combined statistical and systematic uncertainty of 3%. The quantities compared are the backscatter coefficient and the energy spectra (in the backward hemisphere andmore » at specific detector locations). For the backscatter coefficient, the overall agreement is within ±2% in the absolute value of the backscatter coefficient (in per cent), and within 11% of the individual backscatter values. EGSnrc results are systematically on the higher end of the spread of the experimental data, which could be partially from systematic experimental errors discussed in the literature. For the energy spectra, reasonable agreement between simulations and experiments is observed, although there are significant variations in the experimental data. At the lower end of the spectra, simulations are higher than some experimental data, which could be due to reduced experimental sensitivity to lower energy electrons and/or over-estimation by EGSnrc for backscattered secondary electrons. In conclusion, overall good agreement is observed between EGSnrc backscatter calculations and experimental measurements for megavoltage electrons. There is a need for high quality experimental data for the energy spectra of backscattered electrons.« less
  • The INTRABEAM system (Carl Zeiss, Oberkochen, Germany) is a miniature x-ray generator for use in intraoperative radiotherapy and brachytherapy. The device accelerates electrons to up to 50 keV, which are then steered down an evacuated needle probe to strike a thin gold target. For accurate dosimetry of the INTRABEAM system, it is important that the photon spectrum be well understood. Measurements based on air-kerma are heavily impacted by photon spectra, particularly for low photon energies due to the large photoelectric contribution in air mass energy absorption coefficient. While low energy photons have little clinical significance at treatment depths, they maymore » have a large effect on air-kerma measurements. In this work, we have developed an EGSnrc-based monte carlo (MC) model of the Zeiss INTRABEAM system to study the source photon spectra and half-value layers (HVLs) of the bare probe and with various spherical applicators. HVLs were calculated using the analytical attenuation of air-kerma spectra. The calculated bare probe spectrum was compared with simulated and measured results taken from literature. Differences in the L-line energies of gold were found between the spectra predicted by EGSnrc and Geant4. This is due to M and N shell averaging during atomic transitions in EGSnrc. The calculated HVLs of the bare probe and spherical applicators are consistent with literature reported measured values.« less
  • The planning for PBSI is done with the patient's ipsilateral arm raised, however, anatomical changes and variations are unavoidable as the patient resumes her daily activities, potentially resulting in significant deviations in implant geometry from the treatment plan. This study aims to quantify the impact of the ipsilateral arm position on the geometry and dosimetry of the implant at eight weeks, evaluated on post-plans using the MIM Symphony™ software (MIM Software, Cleveland, OH). The average dose metrics for the three patients treated at the TBCC thus far using rigid fusion and contour transfer for the arms up position were 76%more » for the CTV V100, 61% for the PTV V100, and 37% for the PTV V200; and for the arms down position 81% for the CTV V100, 64% for the PTV V100, and 42% for the PTV V200. Qualitative analysis of the post-implant CT for one of the three patients showed poor agreement between the seroma contour transferred from the pre-implant CT and the seroma visible on the post-implant CT. To obtain a clinically accurate plan for that patient, contour modifications were used, yielding improved dose metric averages for the arms-up position for all three patients of 87% for the CTV V100, 68% for the PTV V100, and 39% for the PTV V200. Overall, the data available shows that dosimetric parameters increase with the patient's arm down, both in terms of coverage and in terms of the hot spot, and accrual of more patients may confirm this in a larger population.« less