skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

Abstract

The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode.more » Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.« less

Authors:
;  [1]; ;  [2]
  1. BC Cancer Agency Centre for the Southern Interior (Canada)
  2. BC Cancer Agency Fraser Valley Cancer Centre (Canada)
Publication Date:
OSTI Identifier:
22407653
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; LUNGS; NEOPLASMS; PHANTOMS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RESPIRATION

Citation Formats

Teke, T, Milette, MP, Huang, V, and Thomas, SD. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film. United States: N. p., 2014. Web. doi:10.1118/1.4894888.
Teke, T, Milette, MP, Huang, V, & Thomas, SD. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film. United States. doi:10.1118/1.4894888.
Teke, T, Milette, MP, Huang, V, and Thomas, SD. Fri . "Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film". United States. doi:10.1118/1.4894888.
@article{osti_22407653,
title = {Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film},
author = {Teke, T and Milette, MP and Huang, V and Thomas, SD},
abstractNote = {The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.},
doi = {10.1118/1.4894888},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus onmore » top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.« less
  • Lung tumours move due to respiratory motion. This is managed during planning by acquiring a 4DCT and capturing the excursion of the GTV (gross tumour volume) throughout the breathing cycle within an IGTV (Internal Gross Tumour Volume) contour. Patients undergo a verification cone-beam CT (CBCT) scan immediately prior to treatment. 3D reconstructed images do not consider tumour motion, resulting in image artefacts, such as blurring. This may lead to difficulty in identifying the tumour on reconstructed images. It would be valuable to create a 4DCBCT reconstruction of the tumour motion to confirm that does indeed remain within the planned IGTV.more » CBCT projections of a Quasar Respiratory Motion Phantom are acquired in Treatment mode (half-fan scan) on a Varian TrueBeam accelerator. This phantom contains a mobile, low-density lung insert with an embedded 3cm diameter tumour object. It is programmed to create a 15s periodic, 2cm (sup/inf) displacement. A Varian Real-time Position Management (RPM) tracking-box is placed on the phantom breathing platform. Breathing phase information is automatically integrated into the projection image files. Using in-house Matlab programs and RTK (Reconstruction Tool Kit) open-source toolboxes, the projections are re-binned into 10 phases and a 4DCBCT scan reconstructed. The planning IGTV is registered to the 4DCBCT and the tumour excursion is verified to remain within the planned contour. This technique successfully reconstructs 4DCBCT images using clinical modes for a breathing phantom. UBC-BCCA ethics approval has been obtained to perform 4DCBCT reconstructions on lung patients (REB#H12-00192). Clinical images will be accrued starting April 2014.« less
  • Purpose: Dose build-up and electron contamination are two closely related quantities with important implications in radiotherapy, yet they are quite difficult to measure with great certainty. We present a novel technique for measuring ultra-superficial doses. Method and Materials: We used Gafchromic EBT-3 film which have an effective point of measurement of roughly 153 micros (effective depth in water). By peeling off one of the polyester layers, the active layer becomes the top layer and we obtain a film with a effective point of measurement of 15 microns (effective depth in water). A film calibration was performed using a 180 kVpmore » orthovoltage beam. Since the active layer of the film may have been compressed or perturbed during the peeling of clear polyester we use a triple-channel film calibration technique to minimize the effects of non-uniformity in the active layer. We measured surface doses of orthovoltage beams with lead cutouts in place to introduce contaminant photoelectrons. Results: Our measurements show that the dose enhancement near the edges of the lead were about 125% relative to central axis for 6 cm diameter cutouts up to 170% for 2 cm diameter cutouts, which were within 5% of our EGSnrc based Monte Carlo simulations.« less
  • Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dosemore » calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is within the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.« less
  • HybridArc is a relatively novel radiation therapy technique which combines optimized dynamic conformai arcs (DCA) and intensity modulated radiation therapy (IMRT). HybridArc has possible dosimetry and efficiency advantages over stand alone DCA and IMRT treatments and can be readily implemented on any linac capable of DCA and IMRT, giving strong motivation to commission the modality. The Delta4 phantom (Scandidos, Uppsala, Sweden) has been used for IMRT and VMAT clinical dosimetric verification making it a candidate for HybridArc commissioning. However the HybridArc modality makes use of several non co-planar arcs which creates setup issues due to the geometry of the Delta4,more » resulting in possible phantom gantry collisions for plans with non-zero couch angles. An analysis was done determining the feasibility of using the Delta4 fixed at 0° couch angle compared with results obtained using Gafchromic ETB2 film (Ashland, Covington Kentucky) in an anthropomorphic phantom at the planned couch angles. A gamma index analysis of the measured and planned dose distributions was done using Delta4 and DoseLab Pro (Mobius Medical Systems, Houston Texas) software. For both arc and IMRT sub-fields there is reasonable correlation between the gamma index found from the Delta4 and Gafchromic film. All results show the feasibility of using the Delta4 for HybridArc commissioning.« less