skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife

Abstract

Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dose calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is withinmore » the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.« less

Authors:
 [1];  [2];  [3]
  1. Department of Medical Physics, Carleton University (Canada)
  2. Department of Medical Physics, The Ottawa Hospital Cancer Centre (Canada)
  3. Department of Medical Physics, Carleton University, Department of Medical Physics, The Ottawa Hospital Cancer Centre (Canada)
Publication Date:
OSTI Identifier:
22407646
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 60 APPLIED LIFE SCIENCES; ALGORITHMS; FILM DOSIMETRY; MICRODOSIMETRY; MOSFET; PHANTOMS; QUALITY ASSURANCE; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Marants, R, Vandervoort, E, and Cygler, J E. Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife. United States: N. p., 2014. Web. doi:10.1118/1.4894879.
Marants, R, Vandervoort, E, & Cygler, J E. Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife. United States. doi:10.1118/1.4894879.
Marants, R, Vandervoort, E, and Cygler, J E. Fri . "Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife". United States. doi:10.1118/1.4894879.
@article{osti_22407646,
title = {Poster — Thur Eve — 23: Dose and Position Quality Assurance using the RADPOS System for 4D Radiotherapy with CyberKnife},
author = {Marants, R and Vandervoort, E and Cygler, J E},
abstractNote = {Introduction: RADPOS 4D dosimetry system consists of a microMOSFET dosimeter combined with an electromagnetic positioning sensor, which allows for performing real-time dose and position measurements simultaneously. In this report the use of RADPOS as an independent quality assurance (QA) tool during CyberKnife 4D radiotherapy treatment is described. In addition to RADPOS, GAFCHROMIC® films were used for simultaneous dose measurement. Methods: RADPOS and films were calibrated in a Solid Water® phantom at 1.5 cm depth, SAD= 80 cm, using 60 mm cone. CT based treatment plan was created for a Solid Water® breast phantom containing metal fiducials and RADPOS probe. Dose calculations were performed using iPlan pencil beam algorithm. Before the treatment delivery, GAFCHROMIC® film was inserted inside the breast phantom, next to the RADPOS probe. Then the phantom was positioned on the chest platform of the QUASAR, to which Synchrony LED optical markers were also attached. Position logging began for RADPOS and the Synchrony tracking system, the QUASAR motion was initiated and the treatment was delivered. Results: RADPOS position measurements very closely matched the LED marker positions recorded by the Synchrony camera tracking system. The RADPOS measured dose was 2.5% higher than the average film measured dose, which is within the experimental uncertainties. Treatment plan calculated dose was 4.1 and 1.6% lower than measured by RADPOS and film, respectively. This is most likely due to the inferior nature of the dose calculation algorithm. Conclusions: Our study demonstrates that RADPOS system is a useful tool for independent QA of CyberKnife treatments.},
doi = {10.1118/1.4894879},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam wasmore » created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.« less
  • Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data andmore » a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.« less
  • High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QAmore » solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.« less
  • The aim of this study was to analyze the feasibility of designing comprehensive QA plans using iComCAT for Elekta machines equipped with Agility multileaf collimator and continuously variable dose rate. Test plans with varying MLC speed, gantry speed, and dose rate were created and delivered in a controlled manner. A strip test was designed with three 1 cm MLC positions and delivered using dynamic, StepNShoot and VMAT techniques. Plans were also designed to test error in MLC position with various gantry speeds and various MLC speeds. The delivery fluence was captured using the electronic portal-imaging device. Gantry speed was foundmore » to be within tolerance as per the Canadian standards. MLC positioning errors at higher MLC speed with gravity effects does add more than 2 mm discrepancy. More tests need to be performed to evaluate MLC performance using independent measurement systems. The treatment planning system with end-to-end testing necessary for commissioning was also investigated and found to have >95% passing rates within 3%/3mm gamma criteria. Future studies involve performing off-axis gantry starshot pattern and repeating the tests on three matched Elekta linear accelerators.« less
  • Purpose: The CyberKnife robotic radiosurgery system uses Synchrony respiratory motion compensation, which requires independent performance verification. In this work, the RADPOS 4D dosimetry system’s motion measurements are compared with internal fiducial position measurements. In addition, RADPOS measurements are compared with Synchrony’s predictive correlation model, which is based on internal fiducial and external LED marker position measurements. Methods: A treatment plan was created for a lung insert containing fiducials, RADPOS detector, and Solid Water tumor phantom. Two Quasar Respiratory Motion Phantoms (Q1 and Q2) and two RADPOS detectors (R1 and R2) were used: Q1 simulated lung motion with a lung insertmore » moving in the superior/inferior direction, while Q2 simulated chest motion with a chest platform moving in the anterior/posterior direction. Before treatment, R1 was secured inside of the tumor phantom within Q1, while LED markers and R2 were positioned on the chest platform of Q2. Two treatment delivery cases were studied: isocentric plan (I) and non-isocentric patient plan (P). Four motion cases were studied: no motion (0), sinusoidal and in-phase (1), sinusoidal and out-of-phase (2), patient waveform and out-of-phase (3). A coordinate alignment algorithm was implemented, allowing RADPOS and model position data to be compared within the fiducial coordinate system. Results: The standard deviation of the differences between RADPOS and fiducial position measurements was below 0.6 mm for all experimental cases. The standard deviation of the differences between RADPOS and model position data was 1.0, 1.5, and 1.6 mm along the primary direction of motion for case I1, I2, and P3, respectively. Conclusion: Our work demonstrates that RADPOS is a useful tool for independent quality assurance of CyberKnife treatment with Synchrony respiratory compensation. RADPOS and fiducial position measurement closely match, and RADPOS confirms the effectiveness of CyberKnife’s Synchrony motion tracking. This work was supported by OCAIRO (Ontario Consortium for Adaptive Interventions in Radiation Oncology) grant.« less