skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

Abstract

Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROCmore » curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.« less

Authors:
 [1];  [2];  [3];  [4]; ;  [5]
  1. Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas, 77030 (United States)
  2. Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
  3. Department of Biostatistics, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
  4. Porter Adventist Hospital, Denver, Colorado 80210 (United States)
  5. Imaging and Radiation Oncology Core at Houston and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
Publication Date:
OSTI Identifier:
22403162
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 12; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; COMPARATIVE EVALUATIONS; DOSEMETERS; IONIZATION CHAMBERS; PHANTOMS; QUALITY ASSURANCE; RADIOTHERAPY

Citation Formats

McKenzie, Elizabeth M., Balter, Peter A., Stingo, Francesco C., Jones, Jimmy, Followill, David S., and Kry, Stephen F., E-mail: sfkry@mdanderson.org. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans. United States: N. p., 2014. Web. doi:10.1118/1.4899177.
McKenzie, Elizabeth M., Balter, Peter A., Stingo, Francesco C., Jones, Jimmy, Followill, David S., & Kry, Stephen F., E-mail: sfkry@mdanderson.org. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans. United States. doi:10.1118/1.4899177.
McKenzie, Elizabeth M., Balter, Peter A., Stingo, Francesco C., Jones, Jimmy, Followill, David S., and Kry, Stephen F., E-mail: sfkry@mdanderson.org. Mon . "Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans". United States. doi:10.1118/1.4899177.
@article{osti_22403162,
title = {Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans},
author = {McKenzie, Elizabeth M. and Balter, Peter A. and Stingo, Francesco C. and Jones, Jimmy and Followill, David S. and Kry, Stephen F., E-mail: sfkry@mdanderson.org},
abstractNote = {Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.},
doi = {10.1118/1.4899177},
journal = {Medical Physics},
number = 12,
volume = 41,
place = {United States},
year = {Mon Dec 15 00:00:00 EST 2014},
month = {Mon Dec 15 00:00:00 EST 2014}
}
  • Purpose: To determine whether in-house patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) results predict Imaging and Radiation Oncology Core (IROC)-Houston phantom results. Methods and Materials: IROC Houston's IMRT head and neck phantoms have been irradiated by numerous institutions as part of clinical trial credentialing. We retrospectively compared these phantom results with those of in-house IMRT QA (following the institution's clinical process) for 855 irradiations performed between 2003 and 2013. The sensitivity and specificity of IMRT QA to detect unacceptable or acceptable plans were determined relative to the IROC Houston phantom results. Additional analyses evaluated specific IMRT QA dosimetersmore » and analysis methods. Results: IMRT QA universally showed poor sensitivity relative to the head and neck phantom, that is, poor ability to predict a failing IROC Houston phantom result. Depending on how the IMRT QA results were interpreted, overall sensitivity ranged from 2% to 18%. For different IMRT QA methods, sensitivity ranged from 3% to 54%. Although the observed sensitivity was particularly poor at clinical thresholds (eg 3% dose difference or 90% of pixels passing gamma), receiver operator characteristic analysis indicated that no threshold showed good sensitivity and specificity for the devices evaluated. Conclusions: IMRT QA is not a reasonable replacement for a credentialing phantom. Moreover, the particularly poor agreement between IMRT QA and the IROC Houston phantoms highlights surprising inconsistency in the QA process.« less
  • Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID) coupled with the treatment planning system (TPS), to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC) dynalog files on 10 IMRT patients are presented in this study. Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV) patients and processed through an in house MatLab program to create an opening density matrix (ODM) which was used asmore » the input fluence for dose calculation with the TPS (Pinnacle3, Philips). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software. Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT) is currently under way.« less
  • Purpose: To present a 3D QA method and clinical results for 550 patients. Methods: Five hundred and fifty patient treatment deliveries (400 IMRT, 75 SBRT and 75 VMAT) from various treatment sites, planned on Raystation treatment planning system (TPS), were measured on three beam-matched Elekta linear accelerators using IBA’s COMPASS system. The difference between TPS computed and delivered dose was evaluated in 3D by applying three statistical parameters to each structure of interest: absolute average dose difference (AADD, 6% allowed difference), absolute dose difference greater than 6% (ADD6, 4% structure volume allowed to fail) and 3D gamma test (3%/3mm DTA,more » 4% structure volume allowed to fail). If the allowed value was not met for a given structure, manual review was performed. The review consisted of overlaying dose difference or gamma results with the patient CT, scrolling through the slices. For QA to pass, areas of high dose difference or gamma must be small and not on consecutive slices. For AADD to manually pass QA, the average dose difference in cGy must be less than 50cGy. The QA protocol also includes DVH analysis based on QUANTEC and TG-101 recommended dose constraints. Results: Figures 1–3 show the results for the three parameters per treatment modality. Manual review was performed on 67 deliveries (27 IMRT, 22 SBRT and 18 VMAT), for which all passed QA. Results show that statistical parameter AADD may be overly sensitive for structures receiving low dose, especially for the SBRT deliveries (Fig.1). The TPS computed and measured DVH values were in excellent agreement and with minimum difference. Conclusion: Applying DVH analysis and different statistical parameters to any structure of interest, as part of the 3D QA protocol, provides a comprehensive treatment plan evaluation. Author G. Gueorguiev discloses receiving travel and research funding from IBA for unrelated to this project work. Author B. Crawford discloses receiving travel funding from IBA for unrelated to this project work.« less
  • Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less
  • The aim of this work is to investigate the clinical impact of detector size effect on patient specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). Two photon beam models, BM6 and BM4, were commissioned using photon beam profiles measured with a 6 mm diameter and a 4 mm diameter ion chambers, respectively. A method was developed to extract the ''true'' cross beam profiles, free of volume averaging effect, using analytic fitting/deconvolution. The method was validated using beam profiles measured with a small (0.8 mm) diode detector for small ({<=}10x10 cm{sup 2}) field sizes. These profiles were used to commission amore » third beam model (BM08). Planar dose distributions for eight IMRT plans (total of 53 fields) were calculated using the three beam models and measured with a two-dimensional detector array. Analysis using percent dose difference and distance-to-agreement criteria between the calculation and measurement was done to benchmark the performance of each beam model. The average passing rates between calculation and measurement were 93.8%, 98.9%, and 99.4% for BM6, BM4, and BM08, respectively, when 3%/3 mm criteria were used. A gradual increase in passing rates was noticed with the decrease in the size of the detector used to collect commissioning data. When 2%/2 mm criteria were used, the average passing rates increased significantly from 81.6% (BM6) to 92.6% (BM4) and 96.8% (BM08). These results quantify the enhancement of IMRT dose calculation accuracy with the reduction in detector size used for photon beam profiles measurement. Our study indicates that volume averaging effect can significantly affect the results of IMRT patient specific QA. By removing the detector size effect in beam commissioning, excellent passing rates can be achieved with more stringent criteria such as 2%/2 mm. The use of more stringent criteria for IMRT patient specific QA would likely result in higher chances of detecting any dosimetric errors arising from the treatment planning or delivery system.« less