skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

Abstract

The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

Authors:
; ;  [1]
  1. Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, CZ-121 16 Czech Republic (Czech Republic)
Publication Date:
OSTI Identifier:
22402845
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 14; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CONCENTRATION RATIO; DESORPTION; EXCITATION; LEAD SULFIDES; LIGANDS; OLEIC ACID; OXIDATION; PHASE STABILITY; PHOTOLUMINESCENCE; PHOTONS; QUANTUM DOTS; SURFACES; SUSPENSIONS; TOLUENE; YIELDS

Citation Formats

Greben, M., Fucikova, A., and Valenta, J. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions. United States: N. p., 2015. Web. doi:10.1063/1.4917388.
Greben, M., Fucikova, A., & Valenta, J. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions. United States. doi:10.1063/1.4917388.
Greben, M., Fucikova, A., and Valenta, J. Tue . "Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions". United States. doi:10.1063/1.4917388.
@article{osti_22402845,
title = {Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions},
author = {Greben, M. and Fucikova, A. and Valenta, J.},
abstractNote = {The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.},
doi = {10.1063/1.4917388},
journal = {Journal of Applied Physics},
number = 14,
volume = 117,
place = {United States},
year = {Tue Apr 14 00:00:00 EDT 2015},
month = {Tue Apr 14 00:00:00 EDT 2015}
}
  • Transparent crystallized glasses consisting of nonlinear optical Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals (diameter: {approx}100 nm) are prepared through the crystallization of 40BaO-20TiO{sub 2}-40SiO{sub 2}-0.5Dy{sub 2}O{sub 3} glass (in the molar ratio), and photoluminescence quantum yields of Dy{sup 3+} ions in the visible region are evaluated directly by using a photoluminescence spectrometer with an integrating sphere. The incorporation of Dy{sup 3+} ions into Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals is confirmed from the X-ray diffraction analyses. The total quantum yields of the emissions at the bands of {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 15/2} (blue: 484 nm), {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 13/2} (yellow: 575more » nm), and {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 11/2} (red: 669 nm) in the crystallized glasses are {approx}15%, being about four times larger compared with the precursor glass. It is found that the intensity of yellow (575 nm) emissions and the branching ratio of the yellow (575 nm)/blue (484 nm) intensity ratio increase largely due to the crystallization. It is suggested from Judd-Ofelt analyses that the site symmetry of Dy{sup 3+} ions in the crystallized glasses is largely distorted, giving a large increase in the yellow emissions. It is proposed that Dy{sup 3+} ions substitute Ba{sup 2+} sites in Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals. - Grapical abstract: This figure shows the photoluminescence spectra of Dy{sup 3+} ions in the range of 450-700 nm obtained in the quantum field measurements for the precursor BTS and crystallized (at 770 and 790 deg. C, for 30 min) glasses. The wavelength of the excitation light was 352 nm. By incorporating into Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals, the emission intensity of the yellow band of Dy{sup 3+} ions is largely enhanced. This would give an impact in the science and technology of photoluminescence materials.« less
  • Amplified spontaneous emission (ASE) and lasing from solution-processed materials are demonstrated in the challenging violet-to-blue (430–490 nm) spectral region for colloidal nanoplatelets of CdS and newly synthesized core/shell CdS/ZnS nanoplatelets. Despite modest band-edge photoluminescence quantum yields of 2% or less for single excitons, which we show results from hole trapping, the samples exhibit low ASE thresholds. Furthermore, four-monolayer CdS samples show ASE at shorter wavelengths than any reported film of colloidal quantum-confined material. This work underlines that low quantum yields for single excitons do not necessarily lead to a poor gain medium. The low ASE thresholds originate from negligible dispersionmore » in thickness, large absorption cross sections of 2.8 × 10–14 cm–2, and rather slow (150 to 300 ps) biexciton recombination. We show that under higher-fluence excitation, ASE can kinetically outcompete hole trapping. Using nanoplatelets as the gain medium, lasing is observed in a linear optical cavity. This work confirms the fundamental advantages of colloidal quantum well structures as gain media, even in the absence of high photoluminescence efficiency.« less