skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4902145· OSTI ID:22402706
; ; ;  [1];  [2]
  1. School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049 (China)
  2. IMDEA Materiales, C/ Eric Kandel, 2, Tecnogetafe, 28906 Getafe, Madrid (Spain)

Based on the parameters from published ab-initio theoretical and experimental studies, and combining molecular dynamics and kinetic Monte Carlo simulations, a framework of multi-scale modeling is developed to investigate the long-term evolution of displacement damage induced by heavy-ion irradiation in cubic silicon carbide. The isochronal annealing after heavy ion irradiation is simulated, and the annealing behaviors of total interstitials are found consistent with previous experiments. Two annealing stages below 600 K and one stage above 900 K are identified. The mechanisms for those recovery stages are interpreted by the evolution of defects. The influence of the spatial correlation in primary damage on defect recovery has been studied and found insignificant when the damage dose is high enough, which sheds light on the applicability of approaches with mean-field approximation to the long-term evolution of damage by heavy ions in SiC.

OSTI ID:
22402706
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 20; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Atomic Computer Simulations of Defect Migration in 3C and 4H-SiC
Journal Article · Wed May 19 00:00:00 EDT 2004 · Materials Science Forum · OSTI ID:22402706

Ionization-induced thermally activated defect-annealing process in SiC
Journal Article · Thu Jun 20 00:00:00 EDT 2019 · Physical Review Materials · OSTI ID:22402706

Damage accumulation and defect relaxation in 4H-SiC
Journal Article · Wed Sep 15 00:00:00 EDT 2004 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:22402706