skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of structural and electrical properties of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for α-InGaZnO thin-film transistors

Abstract

We compared the structural properties and electrical characteristics of high-κ Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for amorphous indium-gallium-zinc oxide (α-InGaZnO) thin-film transistor (TFT) applications. The Lu{sub 2}O{sub 3} film has a strong Lu{sub 2}O{sub 3} (400) peak in the X-ray diffraction pattern, while the Lu{sub 2}TiO{sub 5} sample shows a relatively weak Lu{sub 2}TiO{sub 5} (102) peak. Atomic force microscopy reveals that the Lu{sub 2}O{sub 3} dielectric exhibits a rougher surface (about three times) than Lu{sub 2}TiO{sub 5} one. In X-ray photoelectron spectroscopy analysis, we found that the intensity of the O 1s peak corresponding to Lu(OH){sub x} for Lu{sub 2}O{sub 3} film was higher than that of Lu{sub 2}TiO{sub 5} film. Furthermore, compared with the Lu{sub 2}O{sub 3} dielectric, the α-InGaZnO TFT using the Lu{sub 2}TiO{sub 5} gate dielectric exhibited a lower threshold voltage (from 0.43 to 0.25 V), a higher I{sub on}/I{sub off} current ratio (from 3.5 × 10{sup 6} to 1.3 × 10{sup 8}), a smaller subthreshold swing (from 276 to 130 mV/decade), and a larger field-effect mobility (from 14.5 to 24.4 cm{sup 2}/V s). These results are probably due to the incorporation of TiO{sub x} into the Lu{sub 2}O{sub 3} film to form a Lu{sub 2}TiO{sub 5} structure featuringmore » a smooth surface, a low moisture absorption, a high dielectric constant, and a low interface state density at the oxide/channel interface. Furthermore, the stability of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} α-InGaZnO TFTs was investigated under positive gate-bias stress (PGBS) and negative gate-bias stress (NGBS). The threshold voltage of the TFT performed under NGBS is more degradation than that under PGBS. This behavior may be attributed to the electron charge trapping at the dielectric–channel interface under PGBS, whereas the oxygen vacancies occurred in the InGaZnO under NGBS.« less

Authors:
;  [1];  [2];  [3]
  1. Department of Electronics Engineering, Chang Gung University, 259 Wenhwa 1st Road, Kweishan, Taoyuan 333, Taiwan (China)
  2. Division of Natural Science, Center for General Education, Chang Gung University, 259 Wenhwa 1st Road, Kweishan, Taoyuan 333, Taiwan (China)
  3. Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065 (Japan)
Publication Date:
OSTI Identifier:
22402683
Resource Type:
Journal Article
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 116; Journal Issue: 19; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0021-8979
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABSORPTION; ATOMIC FORCE MICROSCOPY; DENSITY; DIELECTRIC MATERIALS; ELECTRIC POTENTIAL; LUTETIUM OXIDES; MOISTURE; PERMITTIVITY; SURFACES; THIN FILMS; TITANIUM OXIDES; TRANSISTORS; VACANCIES; X-RAY DIFFRACTION; X-RAY PHOTOELECTRON SPECTROSCOPY; ZINC OXIDES

Citation Formats

Pan, Tung-Ming, Chen, Ching-Hung, Her, Jim-Long, and Koyama, Keiichi. Comparison of structural and electrical properties of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for α-InGaZnO thin-film transistors. United States: N. p., 2014. Web. doi:10.1063/1.4902518.
Pan, Tung-Ming, Chen, Ching-Hung, Her, Jim-Long, & Koyama, Keiichi. Comparison of structural and electrical properties of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for α-InGaZnO thin-film transistors. United States. https://doi.org/10.1063/1.4902518
Pan, Tung-Ming, Chen, Ching-Hung, Her, Jim-Long, and Koyama, Keiichi. 2014. "Comparison of structural and electrical properties of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for α-InGaZnO thin-film transistors". United States. https://doi.org/10.1063/1.4902518.
@article{osti_22402683,
title = {Comparison of structural and electrical properties of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for α-InGaZnO thin-film transistors},
author = {Pan, Tung-Ming and Chen, Ching-Hung and Her, Jim-Long and Koyama, Keiichi},
abstractNote = {We compared the structural properties and electrical characteristics of high-κ Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for amorphous indium-gallium-zinc oxide (α-InGaZnO) thin-film transistor (TFT) applications. The Lu{sub 2}O{sub 3} film has a strong Lu{sub 2}O{sub 3} (400) peak in the X-ray diffraction pattern, while the Lu{sub 2}TiO{sub 5} sample shows a relatively weak Lu{sub 2}TiO{sub 5} (102) peak. Atomic force microscopy reveals that the Lu{sub 2}O{sub 3} dielectric exhibits a rougher surface (about three times) than Lu{sub 2}TiO{sub 5} one. In X-ray photoelectron spectroscopy analysis, we found that the intensity of the O 1s peak corresponding to Lu(OH){sub x} for Lu{sub 2}O{sub 3} film was higher than that of Lu{sub 2}TiO{sub 5} film. Furthermore, compared with the Lu{sub 2}O{sub 3} dielectric, the α-InGaZnO TFT using the Lu{sub 2}TiO{sub 5} gate dielectric exhibited a lower threshold voltage (from 0.43 to 0.25 V), a higher I{sub on}/I{sub off} current ratio (from 3.5 × 10{sup 6} to 1.3 × 10{sup 8}), a smaller subthreshold swing (from 276 to 130 mV/decade), and a larger field-effect mobility (from 14.5 to 24.4 cm{sup 2}/V s). These results are probably due to the incorporation of TiO{sub x} into the Lu{sub 2}O{sub 3} film to form a Lu{sub 2}TiO{sub 5} structure featuring a smooth surface, a low moisture absorption, a high dielectric constant, and a low interface state density at the oxide/channel interface. Furthermore, the stability of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} α-InGaZnO TFTs was investigated under positive gate-bias stress (PGBS) and negative gate-bias stress (NGBS). The threshold voltage of the TFT performed under NGBS is more degradation than that under PGBS. This behavior may be attributed to the electron charge trapping at the dielectric–channel interface under PGBS, whereas the oxygen vacancies occurred in the InGaZnO under NGBS.},
doi = {10.1063/1.4902518},
url = {https://www.osti.gov/biblio/22402683}, journal = {Journal of Applied Physics},
issn = {0021-8979},
number = 19,
volume = 116,
place = {United States},
year = {Fri Nov 21 00:00:00 EST 2014},
month = {Fri Nov 21 00:00:00 EST 2014}
}