skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4913218· OSTI ID:22399267
 [1]
  1. Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098 (India)

The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

OSTI ID:
22399267
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 10; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English