skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of alloy disorder scattering on the hole mobility of SiGe nanowires

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4904856· OSTI ID:22399181
; ; ; ;  [1]
  1. Dpto. de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada (Spain)

In this work, we analyze the influence of the alloy disorder (AD) scattering on the low-field hole mobility of Si{sub 1-x}Ge{sub x} nanowires (NWs). To do it, the electrostatic description is achieved through a self-consistent solution of the Poisson equation and the six-band k⋅p method in the cross section of the NW. The momentum relaxation time approximation is used to calculate the hole mobility, including alloy disorder and phonon scattering mechanisms, and the use of approximations to calculate the overlap integrals for the scattering matrix elements is discussed. We study the influence of the alloy disorder scattering on the total mobility compared to the phonon contribution, for different values of the AD scattering parameter proposed in the literature, and analyze the performance of SiGe NWs as a function of the Ge molar fraction for both low and high inversion charge densities.

OSTI ID:
22399181
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English