skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoluminescence studies of shock-recovered Y{sub 2}O{sub 3}:Eu{sup 3+}

Abstract

A series of shock-recovery experiments on Y{sub 2}O{sub 3}:Eu{sup 3+} powder were conducted involving the impact of a flyer plate accelerated by a single-stage powder-propellant gun. The recovered samples were characterized by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy. The XRD and PL results of samples shocked at pressures of 13 GPa indicated that a phase transition from a cubic phase to a monoclinic phase occurred. The recovered samples shocked at 21 and 25 GPa consisted of Y{sub 2}O{sub 3}:Eu{sup 3+} with the cubic phase and the monoclinic phase. These results indicated that the shock-induced phase transition was the partial completion of the phase transition.

Authors:
; ; ;  [1]
  1. Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686 (Japan)
Publication Date:
OSTI Identifier:
22395641
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 1; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CUBIC LATTICES; EMISSION SPECTROSCOPY; EUROPIUM IONS; MONOCLINIC LATTICES; PHASE TRANSFORMATIONS; PHOTOLUMINESCENCE; PLATES; POWDERS; PRESSURE DEPENDENCE; PRESSURE RANGE GIGA PA; X-RAY DIFFRACTION; YTTRIUM OXIDES

Citation Formats

Kishimura, Hiroaki, E-mail: kisimura@nda.ac.jp, Hamada, Sho, Aruga, Atsushi, and Matsumoto, Hitoshi. Photoluminescence studies of shock-recovered Y{sub 2}O{sub 3}:Eu{sup 3+}. United States: N. p., 2015. Web. doi:10.1063/1.4905510.
Kishimura, Hiroaki, E-mail: kisimura@nda.ac.jp, Hamada, Sho, Aruga, Atsushi, & Matsumoto, Hitoshi. Photoluminescence studies of shock-recovered Y{sub 2}O{sub 3}:Eu{sup 3+}. United States. doi:10.1063/1.4905510.
Kishimura, Hiroaki, E-mail: kisimura@nda.ac.jp, Hamada, Sho, Aruga, Atsushi, and Matsumoto, Hitoshi. Mon . "Photoluminescence studies of shock-recovered Y{sub 2}O{sub 3}:Eu{sup 3+}". United States. doi:10.1063/1.4905510.
@article{osti_22395641,
title = {Photoluminescence studies of shock-recovered Y{sub 2}O{sub 3}:Eu{sup 3+}},
author = {Kishimura, Hiroaki, E-mail: kisimura@nda.ac.jp and Hamada, Sho and Aruga, Atsushi and Matsumoto, Hitoshi},
abstractNote = {A series of shock-recovery experiments on Y{sub 2}O{sub 3}:Eu{sup 3+} powder were conducted involving the impact of a flyer plate accelerated by a single-stage powder-propellant gun. The recovered samples were characterized by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy. The XRD and PL results of samples shocked at pressures of 13 GPa indicated that a phase transition from a cubic phase to a monoclinic phase occurred. The recovered samples shocked at 21 and 25 GPa consisted of Y{sub 2}O{sub 3}:Eu{sup 3+} with the cubic phase and the monoclinic phase. These results indicated that the shock-induced phase transition was the partial completion of the phase transition.},
doi = {10.1063/1.4905510},
journal = {Applied Physics Letters},
number = 1,
volume = 106,
place = {United States},
year = {Mon Jan 05 00:00:00 EST 2015},
month = {Mon Jan 05 00:00:00 EST 2015}
}
  • The Eu-doped yttria (Y{sub 2}O{sub 3}:Eu{sup 3+}) has been investigated by the in situ high-pressure angle dispersive synchrotron X-ray diffraction (XRD) and the photoluminescence (PL) spectroscopy. The red shift and intensity ratio variation of emissions with increasing pressure were observed and elucidated. It was found that the red shift of emissions is related to the expansion of the f orbit of the Eu{sup 3+} and the intensity ratio variation of emissions is ascribed to the change of the crystal field under high pressure. The pressure-induced changes in spectrum are related to the phase transition, which was confirmed by XRD pattern.more » The two high pressure phases were identified as the monoclinic (C2/m) phase and hexagonal (P-3m1) phase by the Rietveld refinement.« less
  • Highlights: • Eu{sup 3+} doped Y{sub 2}O{sub 3} nanotubes. • Hydrothermal synthesis of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanostructures assissted with a further heat treatment. • Tunable coating ratios of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanophosphor. • Enhanced photoluminescence intensity of Y{sub 2}O{sub 3}:Eu{sup 3+} more than 60% by Y{sub 2}O{sub 3} surface coating. - Abstract: Novel Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} nanotubes with different coating ratios were synthesized successfully by a facile two-step process, including hydrothermal synthesis of Y(OH){sub 3} coated Y(OH){sub 3}:Eu{sup 3+} as precursors and then calcination ofmore » them at 1000 °C for 2 h. X-ray diffraction patterns and field emission scanning electron microscope images indicated these Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} phosphors possess tubular nanostructures. The photoluminescence properties of Y{sub 2}O{sub 3} coated Y{sub 2}O{sub 3}:Eu{sup 3+} were systematically investigated by photoluminescence spectra, and photoluminescence enhancement was observed after proper coating. In other words, the coating ratio played a crucial role in photoluminescence efficiency. When it was 1/9, the photoluminescence intensity of {sup 5}D{sub 0} → {sup 7}F{sub 2} emission (about 613 nm) was 60% higher than that of Y{sub 2}O{sub 3}: Eu{sup 3+} phosphors under 255 nm excitation. Therefore, surface coating may be an alternative route for enhanced photoluminescence properties of the Y{sub 2}O{sub 3}:Eu{sup 3+} red-emitting phosphor.« less
  • The photoluminescence of two series of A- and B-site Eu{sup 3+} substituted (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6} double perovskite phosphor materials, (Sr{sub x}Ba{sub 1−x}){sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub y}Mo{sub 1−y}O{sub 6} and (Sr{sub x}Ba{sub 1−x}){sub 2}Ca{sub 0.96}Eu{sub 0.02}Li{sub 0.02}W{sub y}Mo{sub 1−y}O{sub 6} (x and y=0, 0.25, 0.50, 0.75, and 1), were studied systematically as a function of stoichiometry and crystal structure. The Eu{sup 3+} lattice sites controlled by co-doping with either K or Li were confirmed by Raman spectroscopy. The variation in integrated emission intensity and emission colour over the experimental matrix was examined using statistical tools, and themore » observed trends were rationalized based on the physical and electronic structure of the phosphors. Phosphors with Eu on B-site with maximum Sr content had remarkably higher emission intensities than all other materials, but the emission was more orange than red due to domination of the {sup 5}D{sub 0}–{sup 7}F{sub 1} (595 nm) transition of Eu{sup 3+}. The relative intensities of the {sup 5}D{sub 0}–{sup 7}F{sub 2} (615 nm) and {sup 5}D{sub 0}–{sup 7}F{sub 1} transitions of Eu{sup 3+}, and thus the red-shift of the emission, decreased linearly with increasing Sr content in the A-site Eu-substituted phosphors, and reached a maximum for Sr{sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub 0.25}Mo{sub 0.75}O{sub 6}. A maximum external quantum efficiency of 17% was obtained for the phosphor Sr{sub 2}Ca{sub 0.7}Eu{sub 0.15}Li{sub 0.15}W{sub 0.5}Mo{sub 0.5}O{sub 6} with Eu on B-site. - Highlights: • Systematic study of the photoluminescence of Eu{sup 3+}-doped (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6}. • The Eu{sup 3+} lattice sites were confirmed by Raman spectroscopy. • A large parameter space was investigated using statistical tools. • A maximum external QE of 17% was obtained for Sr{sub 2}Ca{sub 0.7}Eu{sub 0.15}Li{sub 0.15}W{sub 0.5}Mo{sub 0.5}O{sub 6}.« less
  • Undoped and Eu-doped yttrium aluminum garnet nano-powders were prepared by a facile combustion method with citric acid/ethylene diamine tetraacetic acid (EDTA) as fuels and nitrates as oxidizers. The precursors and powders calcined at 1030 {sup o}C were investigated using thermogravimetric (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) surface area measurements. It was found that the powders could be indexed with a garnet structure. The grains were in shape of hemispherical with sizes between 60 nm and 100 nm. With decreasing the citric acid/EDTA ratio, the crystallite size decreased steadily and the specificmore » surface area increased. Investigations of photoluminescence (PL) revealed that as-synthesized YAG:Eu{sup 3+} phosphor samples exhibited an orange emission band with a main peak at 591 nm under the excitation of 394 nm. As citric acid amounts increased, the quality of crystallinity became higher and the luminescent properties were monotonously enhanced.« less