skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of reduced graphene oxide (rGO) via chemical reduction

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4915423· OSTI ID:22391742
;  [1];  [2]
  1. Department of Physics, Himachal Pradesh University, Shimla (India)
  2. Department of Applied Sciences, Sri Sai University, Palampur (India)

Natural flake Graphite was used as the starting material for the graphene synthesis. In the first step flake graphite was treated with oxidizing agents under vigorous conditions to obtain graphite oxide. Layered graphite oxide decorated with oxygen has large inter-layer distance leading easy exfoliation into single sheets by ultrasonication giving graphene oxide. In the last step exfoliated graphene oxide sheets were reduced slowly with the help of reducing agent to obtain fine powder which is labeled as reduced graphene oxide (rGO). This rGO was further characterized by X-Ray Diffraction (XRD), Scanning Tunneling Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy techniques. XRD pattern shows peaks corresponding to (002) graphitic lattice planes indicating the formation of network of sp{sup 2} like carbon structure. SEM images show the ultrathin, wrinkled, paper-like morphology of graphene sheets. IR study shows that the graphite has been oxidized to graphite oxide with the presence of various absorption bands confirming the presence of oxidizing groups. The FTIR spectrum of rGO shows no sharp peaks confirming the efficient reduction of rGO. The Raman spectrum shows disorder in the graphene sheets.

OSTI ID:
22391742
Journal Information:
AIP Conference Proceedings, Vol. 1661, Issue 1; Conference: ICCMP 2014: International Conference on Condensed Matter Physics 2014, Shimla (India), 4-6 Nov 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English