skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4915226· OSTI ID:22391548
;  [1];  [2]
  1. School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
  2. Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

OSTI ID:
22391548
Journal Information:
AIP Conference Proceedings, Vol. 1657, Issue 1; Conference: PERFIK 2014: National Physics Conference 2014, Kuala Lumpur (Malaysia), 18-19 Nov 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English