skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New scintillator materials for future and present facilities

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4909582· OSTI ID:22390980
 [1];  [2]
  1. University of Milano, Department of Physics and INFN section of Milano, via Celoria 16, 20133 Milano (Italy)
  2. INFN section of Milano, via Celoria 16, 20133 Milano (Italy)

In the recent years LaBr3:Ce crystals started a new generation of high performing scintillator detectors. In fact, a large number of different, new and promising scintillators are now becoming commercially available, as for example CeBr{sub 3}, CLYC, SrI{sub 2}. Some others, like GYGAG:Ce, CLLB, CLLC, will be available in the near future. The CLYC crystal enriched with {sup 6}Li provides extremely high efficiency for thermal neutron identification and detection with performances comparable to {sup 3}He tubes. The CLYC enriched with {sup 7}Li can provide the direct measurement of the neutron kinetic energy from the energy pulse signal. The most recent R and D activity shows that ‘co-doping’ technique has the effect to improve the crystal proportionality and the mechanical properties thus significantly increasing the reliability and energy resolution of LaBr{sub 3};Ce and CeBr{sub 3} scintillators. Such a new generation of detectors can be the backbone for the detectors array of the future accelerator facilities as for example ELI-NP which will provide very intense high-energy γ-ray beam with very low bandwidth.

OSTI ID:
22390980
Journal Information:
AIP Conference Proceedings, Vol. 1645, Issue 1; Conference: Carpathian Summer School of Physics 2014, Sinaia (Romania), 13-26 Jul 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English