skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular ions in the laboratory and in space

Abstract

Molecular ions play a central role in the gas-phase chemistry of the interstellar medium; they also provide information on the physical conditions in astronomical sources (e.g., fractional ionization), and in some cases can be used to infer the abundance of nonpolar molecules such as N{sub 2} and CO{sub 2} which can not be observed in the radio band. During the past four years, the rotational spectra of six carbon-chain anions (C{sub 2}H{sup −}, C{sub 4}H{sup −}, C{sub 6}H{sup −}, C{sub 8}H{sup −}, CN{sup −}, C{sub 3}N{sup −}), NCO{sup −} and seven protonated species (HSCO{sup +}, HSCS{sup +}, cis- and trans-HOSO{sup +}, H{sub 2}NCO{sup +}, HNCOH{sup +}, and HNNO{sup +}) have been detected in our laboratory. On the basis of dedicated astronomical searches, all of the carbon-chain anions except C{sub 2}H{sup −} have now been identified in space. In addition to highlighting recent work on carbon-chain anions and protonated HSO{sub 2}{sup +}, efforts to better understand the distribution of anions in space using C{sub 6}H{sup −} as a tracer for negative charge are described.

Authors:
 [1]
  1. Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, 02138 (United States)
Publication Date:
OSTI Identifier:
22390909
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1642; Journal Issue: 1; Conference: ICCMSE-2010: International Conference of Computational Methods in Sciences and Engineering 2010, Kos (Greece), 3-8 Oct 2010; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; ANIONS; CARBON; CARBON DIOXIDE; INTERSTELLAR SPACE; MOLECULAR IONS; MOLECULES; NITROGEN

Citation Formats

McCarthy, Michael C. Molecular ions in the laboratory and in space. United States: N. p., 2015. Web. doi:10.1063/1.4906692.
McCarthy, Michael C. Molecular ions in the laboratory and in space. United States. doi:10.1063/1.4906692.
McCarthy, Michael C. Thu . "Molecular ions in the laboratory and in space". United States. doi:10.1063/1.4906692.
@article{osti_22390909,
title = {Molecular ions in the laboratory and in space},
author = {McCarthy, Michael C.},
abstractNote = {Molecular ions play a central role in the gas-phase chemistry of the interstellar medium; they also provide information on the physical conditions in astronomical sources (e.g., fractional ionization), and in some cases can be used to infer the abundance of nonpolar molecules such as N{sub 2} and CO{sub 2} which can not be observed in the radio band. During the past four years, the rotational spectra of six carbon-chain anions (C{sub 2}H{sup −}, C{sub 4}H{sup −}, C{sub 6}H{sup −}, C{sub 8}H{sup −}, CN{sup −}, C{sub 3}N{sup −}), NCO{sup −} and seven protonated species (HSCO{sup +}, HSCS{sup +}, cis- and trans-HOSO{sup +}, H{sub 2}NCO{sup +}, HNCOH{sup +}, and HNNO{sup +}) have been detected in our laboratory. On the basis of dedicated astronomical searches, all of the carbon-chain anions except C{sub 2}H{sup −} have now been identified in space. In addition to highlighting recent work on carbon-chain anions and protonated HSO{sub 2}{sup +}, efforts to better understand the distribution of anions in space using C{sub 6}H{sup −} as a tracer for negative charge are described.},
doi = {10.1063/1.4906692},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1642,
place = {United States},
year = {Thu Jan 22 00:00:00 EST 2015},
month = {Thu Jan 22 00:00:00 EST 2015}
}