The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code
Abstract
An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a timedependent HartreeFock or KohnSham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.
 Authors:
 Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)
 Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany)
 Equipe de Chimie Physique, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau (France)
 Departimeno di Chimica, IFM, Università di Torino and NIS  Nanostructure Interfaces and Surfaces  Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy)
 Departimento di Scienze e Tecnologie Avanzati, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria (Italy)
 Publication Date:
 OSTI Identifier:
 22390884
 Resource Type:
 Journal Article
 Resource Relation:
 Journal Name: AIP Conference Proceedings; Journal Volume: 1642; Journal Issue: 1; Conference: ICCMSE2010: International Conference of Computational Methods in Sciences and Engineering 2010, Kos (Greece), 38 Oct 2010; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; C CODES; ELECTRIC FIELDS; HARTREEFOCK METHOD; MATHEMATICAL SOLUTIONS; MODIFICATIONS; NONLINEAR PROBLEMS; PERTURBATION THEORY; POLARIZABILITY; POTENTIALS; RELAXATION; SCALARS; TIME DEPENDENCE; VECTORS
Citation Formats
Kirtman, Bernard, Springborg, Michael, Rérat, Michel, Ferrero, Mauro, Lacivita, Valentina, Dovesi, Roberto, and Orlando, Roberto. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code. United States: N. p., 2015.
Web. doi:10.1063/1.4906650.
Kirtman, Bernard, Springborg, Michael, Rérat, Michel, Ferrero, Mauro, Lacivita, Valentina, Dovesi, Roberto, & Orlando, Roberto. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code. United States. doi:10.1063/1.4906650.
Kirtman, Bernard, Springborg, Michael, Rérat, Michel, Ferrero, Mauro, Lacivita, Valentina, Dovesi, Roberto, and Orlando, Roberto. 2015.
"The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code". United States.
doi:10.1063/1.4906650.
@article{osti_22390884,
title = {The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code},
author = {Kirtman, Bernard and Springborg, Michael and Rérat, Michel and Ferrero, Mauro and Lacivita, Valentina and Dovesi, Roberto and Orlando, Roberto},
abstractNote = {An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a timedependent HartreeFock or KohnSham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.},
doi = {10.1063/1.4906650},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1642,
place = {United States},
year = 2015,
month = 1
}

A detailed study of the vector potential approach (VPA) for the response of periodic systems to a finite electric field is carried out using a parameterized model selfconsistent field (SCF) polymer Hamiltonian. Specific issues discussed include 'smoothing' of crystal orbitals, convergence and accuracy of SCF solutions as a function of field and number of k points, Zener tunneling, fielddependent band structure, determination of (non)linear susceptibilities, and nuclear relaxation.

Weak interactions in Graphane/BN systems under static electric fields—A periodic abinitio study
Abinitio calculations via periodic HartreeFock (HF) and local secondorder MøllerPlesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems. 
Plasma response to nonlinear timeperiodic electric fields in one dimension
Plasma response to spatially nonuniform timeperiodic electric fields is of importance in many applications. For the case of a spatially linear monochromatic electric field in Paul traps, exact analytic expressions for the timedependent plasma distribution function have been recently obtained [K. Shah and H. S. Ramachandran, Phys. Plasmas 15, 062303 (2008)]. In this paper, the problem of plasma response to a onedimensional timeperiodic electric field with a general spatial dependence is considered and analytic expressions for the timeaveraged plasma distribution function and density are derived by solving the Vlasov equation under two limiting cases of high and low frequencies. Undermore »