skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

Abstract

The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

Authors:
; ; ; ;  [1];  [2]
  1. Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde, Puebla (Mexico)
  2. Hospital General del Sur Hospital de la Mujer, Puebla (Mexico)
Publication Date:
OSTI Identifier:
22390524
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1626; Journal Issue: 1; Conference: 13. Mexican Symposium on Medical Physics, Leon, Guanajuato (Mexico), 15-16 Mar 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; AMERICIUM 241; CURIUM OXIDES; DATA ACQUISITION; ENERGY RESOLUTION; FLUORESCENCE; IRON 55; RADIATION DETECTION; RADIATION SOURCES; READOUT SYSTEMS; SENSORS; SI SEMICONDUCTOR DETECTORS; STRONTIUM 90; TOMOGRAPHY; X RADIATION

Citation Formats

Chumacero, E. Miguel, De Celis Alonso, B., Martínez Hernández, M. I., Vargas, G., Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com, and Moreno Barbosa, F. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications. United States: N. p., 2014. Web. doi:10.1063/1.4901361.
Chumacero, E. Miguel, De Celis Alonso, B., Martínez Hernández, M. I., Vargas, G., Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com, & Moreno Barbosa, F. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications. United States. doi:10.1063/1.4901361.
Chumacero, E. Miguel, De Celis Alonso, B., Martínez Hernández, M. I., Vargas, G., Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com, and Moreno Barbosa, F. 2014. "Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications". United States. doi:10.1063/1.4901361.
@article{osti_22390524,
title = {Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications},
author = {Chumacero, E. Miguel and De Celis Alonso, B. and Martínez Hernández, M. I. and Vargas, G. and Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com and Moreno Barbosa, F.},
abstractNote = {The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.},
doi = {10.1063/1.4901361},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1626,
place = {United States},
year = 2014,
month =
}
  • Medipix3 is a single photon-counting pixel readout chip whose new front-end architecture aims to eliminate the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. The chip requires area and power-efficient reconfigurable digital counters and shift registers that can be integrated with other photon-processing analog and digital circuits within the 55 {mu}mx55 {mu}m pixel area. This work proposes a configurable-depth, programmable mode digital counter for use in Medipix3.
  • The Large Area Medipix-Based Detector Array (Lambda) has been used in a ptychographic imaging experiment on solar-cell nanowires. By using a semi-transparent central stop, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high-resolution phase reconstructions. Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by themore » semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 10{sup 5} photons nm{sup −2} s{sup −1} or a flux of ∼10{sup 10} photons s{sup −1} on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.« less
  • JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 ×more » 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.« less
  • Pixel detector readout cells have been designed in the radiation hard DMILL technology and their characteristics evaluated before and after irradiation to 14Mrad. The test chip consists of two blocks of six readout cells each. Two different charge amplifiers are implemented, one of them using a capacitive feedback loop, the other the fast signal charge transfer to a high impedance integrating node. The measured equivalent noise charge is 110e{sup {minus}}r.m.s. before and 150e{sup {minus}}r.m.s. after irradiation. With a discriminator threshold set to 5000e{sup {minus}}, which reduces for the same bias setting to 400e{sup {minus}} after irradiation, the threshold variation ismore » 300e{sup {minus}}r.m.s. and 250e{sup {minus}}r.m.s. respectively. The time walk is 40ns before and after irradiation. The use of this SOI technology for monolithic integration of electronics and detector in one substrate is under investigation.« less