skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data

Abstract

Most cosmological constraints on modified gravity are obtained assuming that the cosmic evolution was standard ΛCDM in the past and that the present matter density and power spectrum normalization are the same as in a ΛCDM model. Here we examine how the constraints change when these assumptions are lifted. We focus in particular on the parameter Y (also called G{sub eff}) that quantifies the deviation from the Poisson equation. This parameter can be estimated by comparing with the model-independent growth rate quantity fσ{sub 8}(z) obtained through redshift distortions. We reduce the model dependency in evaluating Y by marginalizing over σ{sub 8} and over the initial conditions, and by absorbing the degenerate parameter Ω{sub m,0} into Y. We use all currently available values of fσ{sub 8}(z). We find that the combination Y-circumflex =YΩ{sub m,0}, assumed constant in the observed redshift range, can be constrained only very weakly by current data, Y-circumflex =0.28{sub −0.23}{sup +0.35} at 68% c.l. We also forecast the precision of a future estimation of Y-circumflex in a Euclid-like redshift survey. We find that the future constraints will reduce substantially the uncertainty, Y-circumflex =0.30{sub −0.09}{sup +0.08} , at 68% c.l., but the relative error on Y-circumflex around the fiducialmore » remains quite high, of the order of 30%. The main reason for these weak constraints is that Y-circumflex is strongly degenerate with the initial conditions, so that large or small values of Y-circumflex are compensated by choosing non-standard initial values of the derivative of the matter density contrast. Finally, we produce a forecast of a cosmological exclusion plot on the Yukawa strength and range parameters, which complements similar plots on laboratory scales but explores scales and epochs reachable only with large-scale galaxy surveys. We find that future data can constrain the Yukawa strength to within 3% of the Newtonian one if the range is around a few Megaparsecs. In the particular case of f(R) models, we find that the Yukawa range will be constrained to be larger than 80 Mpc/h or smaller than 2 Mpc/h (95% c.l.), regardless of the specific f(R) model.« less

Authors:
 [1];  [2]
  1. Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale Usberti 7/A, Parma, I-43100 Italy (Italy)
  2. Institut fuer Theoretische Physik, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany)
Publication Date:
OSTI Identifier:
22382004
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 02; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; DENSITY; ERRORS; GALACTIC EVOLUTION; GALAXIES; GRAVITATION; LIMITING VALUES; MATTER; POISSON EQUATION; RED SHIFT; SPECTRA

Citation Formats

Taddei, Laura, and Amendola, Luca, E-mail: laura.taddei@fis.unipr.it, E-mail: l.amendola@thphys.uni-heidelberg.de. A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data. United States: N. p., 2015. Web. doi:10.1088/1475-7516/2015/02/001.
Taddei, Laura, & Amendola, Luca, E-mail: laura.taddei@fis.unipr.it, E-mail: l.amendola@thphys.uni-heidelberg.de. A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data. United States. doi:10.1088/1475-7516/2015/02/001.
Taddei, Laura, and Amendola, Luca, E-mail: laura.taddei@fis.unipr.it, E-mail: l.amendola@thphys.uni-heidelberg.de. Sun . "A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data". United States. doi:10.1088/1475-7516/2015/02/001.
@article{osti_22382004,
title = {A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data},
author = {Taddei, Laura and Amendola, Luca, E-mail: laura.taddei@fis.unipr.it, E-mail: l.amendola@thphys.uni-heidelberg.de},
abstractNote = {Most cosmological constraints on modified gravity are obtained assuming that the cosmic evolution was standard ΛCDM in the past and that the present matter density and power spectrum normalization are the same as in a ΛCDM model. Here we examine how the constraints change when these assumptions are lifted. We focus in particular on the parameter Y (also called G{sub eff}) that quantifies the deviation from the Poisson equation. This parameter can be estimated by comparing with the model-independent growth rate quantity fσ{sub 8}(z) obtained through redshift distortions. We reduce the model dependency in evaluating Y by marginalizing over σ{sub 8} and over the initial conditions, and by absorbing the degenerate parameter Ω{sub m,0} into Y. We use all currently available values of fσ{sub 8}(z). We find that the combination Y-circumflex =YΩ{sub m,0}, assumed constant in the observed redshift range, can be constrained only very weakly by current data, Y-circumflex =0.28{sub −0.23}{sup +0.35} at 68% c.l. We also forecast the precision of a future estimation of Y-circumflex in a Euclid-like redshift survey. We find that the future constraints will reduce substantially the uncertainty, Y-circumflex =0.30{sub −0.09}{sup +0.08} , at 68% c.l., but the relative error on Y-circumflex around the fiducial remains quite high, of the order of 30%. The main reason for these weak constraints is that Y-circumflex is strongly degenerate with the initial conditions, so that large or small values of Y-circumflex are compensated by choosing non-standard initial values of the derivative of the matter density contrast. Finally, we produce a forecast of a cosmological exclusion plot on the Yukawa strength and range parameters, which complements similar plots on laboratory scales but explores scales and epochs reachable only with large-scale galaxy surveys. We find that future data can constrain the Yukawa strength to within 3% of the Newtonian one if the range is around a few Megaparsecs. In the particular case of f(R) models, we find that the Yukawa range will be constrained to be larger than 80 Mpc/h or smaller than 2 Mpc/h (95% c.l.), regardless of the specific f(R) model.},
doi = {10.1088/1475-7516/2015/02/001},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 02,
volume = 2015,
place = {United States},
year = {Sun Feb 01 00:00:00 EST 2015},
month = {Sun Feb 01 00:00:00 EST 2015}
}
  • We investigate what current cosmological data tells us about the cosmological expansion rate in a model independent way. Specifically, we study if the expansion was decelerating at high redshifts and is accelerating now, without referring to any model for the energy content of the universe, nor to any specific theory of gravity. This differs from most studies of the expansion rate which, e.g., assumes some underlying parameterised model for the dark energy component of the universe. To accomplish this, we have devised a new method to probe the expansion rate without relying on such assumptions. Using only supernova data, wemore » conclude that there is little doubt that the universe has been accelerating at late times. However, contrary to some previous claims, we can not determine if the universe was previously decelerating. For a variety of methods used for constraining the expansion history of the universe, acceleration is detected from supernovae alone at >5{sigma}, regardless of the curvature of the universe. Specifically, using a Taylor expansion of the scale factor, acceleration today is detected at >12{sigma}. If we also include the ratio of the scale of the baryon acoustic oscillations as imprinted in the cosmic microwave background and in the large scale distribution of galaxies, it is evident from the data that the expansion decelerated at high redshifts, but only with the assumption of a flat or negatively curved universe.« less
  • Model-independent parametrisations of modified gravity have attracted a lot of attention over the past few years and numerous combinations of experiments and observables have been suggested to constrain the parameters used in these models. Galaxy clusters have been mentioned, but not looked at as extensively in the literature as some other probes. Here we look at adding galaxy clusters into the mix of observables and examine how they could improve the constraints on the modified gravity parameters. In particular, we forecast the constraints from combining Planck satellite Cosmic Microwave Background (CMB) measurements and Sunyaev-Zeldovich (SZ) cluster catalogue with a DES-likemore » Weak Lensing (WL) survey. We find that cluster counts significantly improve the constraints over those derived using CMB and WL. We then look at surveys further into the future, to see how much better it may be feasible to make the constraints.« less
  • We analyse CMB data in a manner which is as independent as possible of the model of late-time cosmology. We encode the effects of late-time cosmology into a single parameter which determines the distance to the last scattering surface. We exclude low multipoles l < 40 from the analysis. We consider the WMAP5 and ACBAR data. We obtain the cosmological parameters 100ω{sub b} = 2.13±0.05, ω{sub c} = 0.124±0.007, n{sub s} = 0.93±0.02 and θ{sub A} = 0.593°±0.001° (68% C.L.). The last number is the angular scale subtended by the sound horizon at decoupling. There is a systematic shift inmore » the parameters as more low l data are omitted, towards smaller values of ω{sub b} and n{sub s} and larger values of ω{sub c}. The scale θ{sub A} remains stable and very well determined.« less
  • In this paper we place new constraints on a f(R) modified gravity model recently proposed by Hu and Sawicki (HS). After checking that the HS model produces a viable cosmology, i.e. a matter dominated epoch followed by a late-time acceleration, we constrain some of its parameters by using recent observations from the UNION compilation of luminosity distances of Supernovae type Ia, including complementary information from baryonic acoustic oscillations, Hubble expansion, and age data. We found that the data considered is unable to place significant constraints on the model parameters and we discuss the impact of a different assumption of themore » background model in cosmic parameters inference.« less
  • We use current and future simulated data of the growth rate of large scale structure in combination with data from supernova, BAO, and CMB surface measurements, in order to put constraints on the growth index parameters. We use a recently proposed parameterization of the growth index that interpolates between a constant value at high redshifts and a form that accounts for redshift dependencies at small redshifts. We also suggest here another exponential parameterization with a similar behaviour. The redshift dependent parametrizations provide a sub-percent precision level to the numerical growth function, for the full redshift range. Using these redshift parameterizationsmore » or a constant growth index, we find that current available data from galaxy redshift distortions and Lyman-alpha forests is unable to put significant constraints on any of the growth parameters. For example both ΛCDM and flat DGP are allowed by current growth data. We use an MCMC analysis to study constraints from future growth data, and simulate pessimistic and moderate scenarios for the uncertainties. In both scenarios, the redshift parameterizations discussed are able to provide significant constraints and rule out models when incorrectly assumed in the analysis. The values taken by the constant part of the parameterizations as well as the redshift slopes are all found to significantly rule out an incorrect background. We also find that, for our pessimistic scenario, an assumed constant growth index over the full redshift range is unable to rule out incorrect models in all cases. This is due to the fact that the slope acts as a second discriminator at smaller redshifts and therefore provide a significant test to identify the underlying gravity theory.« less