skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15

Abstract

The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystals as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps asmore » they would be recognisable ‘objects’.« less

Authors:
; ; ; ;  [1]
  1. University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)
Publication Date:
OSTI Identifier:
22375699
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta crystallographica. Section F, Structural biology communications; Journal Volume: 70; Journal Issue: Pt 9; Other Information: PMCID: PMC4157407; PMID: 25195880; PUBLISHER-ID: no5054; OAI: oai:pubmedcentral.nih.gov:4157407; Copyright (c) Tanley et al. 2014; This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMS; CRYSTALS; DENSITY; ELECTRON DENSITY; LYSOZYME; PLATINUM; SHAPE; STABILITY; TRANSFORMATIONS; X-RAY LASERS

Citation Formats

Tanley, Simon W. M., Starkey, Laurina-Victoria, Lamplough, Lucinda, Kaenket, Surasek, and Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk. The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15. United States: N. p., 2014. Web. doi:10.1107/S2053230X14014009.
Tanley, Simon W. M., Starkey, Laurina-Victoria, Lamplough, Lucinda, Kaenket, Surasek, & Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk. The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15. United States. doi:10.1107/S2053230X14014009.
Tanley, Simon W. M., Starkey, Laurina-Victoria, Lamplough, Lucinda, Kaenket, Surasek, and Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk. Fri . "The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15". United States. doi:10.1107/S2053230X14014009.
@article{osti_22375699,
title = {The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15},
author = {Tanley, Simon W. M. and Starkey, Laurina-Victoria and Lamplough, Lucinda and Kaenket, Surasek and Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk},
abstractNote = {The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystals as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.},
doi = {10.1107/S2053230X14014009},
journal = {Acta crystallographica. Section F, Structural biology communications},
number = Pt 9,
volume = 70,
place = {United States},
year = {Fri Aug 29 00:00:00 EDT 2014},
month = {Fri Aug 29 00:00:00 EDT 2014}
}
  • No abstract prepared.
  • Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) ofmore » HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C—H⋯O hydrogen bonds are identified by means of the existence of bond critical points (BCPs) in the multipole electron density. It is proposed that these weak interactions might be important for defining the tertiary structure and activity of HEWL. The deprotonated state of Glu35 prevents a distinction between the Phillips and Koshland mechanisms.« less
  • Chemical preparation and reactions of silver salts of M(OTeF{sub 5}){sub 6}{sup {minus}} (M = Nb, Sb), and M{prime}(OTeF{sub 5}){sub 6}{sup {minus}} (M{prime} = Ti, Zr, Hf) were reported. The silver salts were converted to CPh{sub 3}{sup +} or N(n-Bu){sub 4}{sup +} salts. Ag{sub 2}Ti(OTeF{sub 5}){sub 6}, AgNb(OTeF{sub 5}){sub 6}, and AgSb(OTeF{sub 5}){sub 6} were recrystallized in dihaloalkane solvents yielding crystals containing solvent molecules which were subsequently characterized by X-ray crystallography. Reactivity of the anions toward other compounds was investigated.
  • Two-dimensional (2D) hybrid halide perovskites come as a family (B) 2(A) n-1PbnX 3n+1 (B and A= cations; X= halide). These perovskites are promising semiconductors for solar cells and optoelectronic applications. Among the fascinating properties of these materials is white-light emission, which has been mostly observed in single-layered 2D lead bromide or chloride systems (n = 1), where the broad emission comes from the transient photoexcited states generated by self-trapped excitons (STEs) from structural distortion. Here we report a multilayered 2D perovskite (n = 3) exhibiting a tunable white-light emission. Ethylammonium (EA+) can stabilize the 2D perovskite structure in EA 4Pbmore » 3Br 10–xCl x (x = 0, 2, 4, 6, 8, 9.5, and 10) with EA + being both the A and B cations in this system. Because of the larger size of EA, these materials show a high distortion level in their inorganic structures, with EA4Pb3Cl10 having a much larger distortion than that of EA 4Pb 3Br 10, which results in broadband white-light emission of EA 4Pb 3Cl 10 in contrast to narrow blue emission of EA4Pb3Br10. The average lifetime of the series decreases gradually from the Cl end to the Br end, indicating that the larger distortion also prolongs the lifetime (more STE states). The band gap of EA 4Pb 3Br 10–xCl x ranges from 3.45 eV (x = 10) to 2.75 eV (x = 0), following Vegard’s law. First-principles density functional theory calculations (DFT) show that both EA 4Pb 3Cl 10 and EA 4Pb 3Br 10 are direct band gap semiconductors. The color rendering index (CRI) of the series improves from 66 (EA 4Pb 3Cl 10) to 83 (EA 4Pb 3Br 0.5Cl 9.5), displaying high tunability and versatility of the title compounds.« less