skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888758· OSTI ID:22369576
; ; ;  [1]
  1. The University of Alabama at Birmingham, Birmingham, AL (United States)

Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantom containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.

OSTI ID:
22369576
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English