skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-413: Experience-Based VMAT Plan Quality Database

Abstract

Purpose: To quantify VMAT plan quality using a retrospective study of over 200 clinical treated VMAT plans created using the Eclipse Treatment Planning System to create benchmarks of plan quality for a few categories of treatment sites. Methods: Using a controlled phantom geometry, various dosimetric indices were investigated to quantify dosimetric plan quality as a function of isocenter displacement from center of mass, average path length, number of arcs and PTV proximity to critical structures. Beginning with published dosimetry indices from SRS and SBRT evaluations, UDI (Unified Dosimetry Index) and modified UDI were tested before creating a new factor VMAT-DI. VMAT-DI was developed within boundaries of this project and it includes renormalized factors of conformity index, coverage index, modified gradient index and homogeneity index as well as indices based on routine clinical practice such as absolute dose max index. The plans were then evaluated using the VMAT-DI such that benchmarks for planning could be created. Results: The majority of the plans evaluated could be assigned VMAT-DI values within a range for each treatment site. However, the outliers were results of difficult planning parameters such as very irregular targets, inhomogeneities or difficult to achieve critical structure constraints. To effectively use VMAT-DImore » for guidance, especially for prediction of the plan quality for body sites new to the practice, VMATDI database needs to be subdivided by target complexity and by body site index/average path length factor. Conclusion: An experienced-based VMAT-DI database can be used to help analyze plans before evaluation by the physician to show that it adheres to the clinical standards of previously treated VMAT plans which will make a guideline for concluding the optimization. The introduction of institution-wide clinical planning protocols, standardizing OAR naming and constraints will make it possible to incorporate a cumulative critical structure dosimetry index such as NTCP.« less

Authors:
; ; ;  [1];  [2];  [3]
  1. Mount Sinai Beth Israel, NY, NY (Israel)
  2. Brooklyn Technical High School, Brooklyn, NY (United States)
  3. Stuyvesant High School, NY, NY (United States)
Publication Date:
OSTI Identifier:
22369566
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 60 APPLIED LIFE SCIENCES; DOSES; DOSIMETRY; EVALUATION; FORECASTING; GEOMETRY; INDEXES; LENGTH; OPTIMIZATION; PHANTOMS; PLANNING; RENORMALIZATION; STANDARDS; STRONTIUM SULFIDES

Citation Formats

Bernstein, K, Kalach, N, Wolthuis, B, Tai, C, Kravchuk, A, and Bernstein, E. SU-E-T-413: Experience-Based VMAT Plan Quality Database. United States: N. p., 2014. Web. doi:10.1118/1.4888746.
Bernstein, K, Kalach, N, Wolthuis, B, Tai, C, Kravchuk, A, & Bernstein, E. SU-E-T-413: Experience-Based VMAT Plan Quality Database. United States. doi:10.1118/1.4888746.
Bernstein, K, Kalach, N, Wolthuis, B, Tai, C, Kravchuk, A, and Bernstein, E. 2014. "SU-E-T-413: Experience-Based VMAT Plan Quality Database". United States. doi:10.1118/1.4888746.
@article{osti_22369566,
title = {SU-E-T-413: Experience-Based VMAT Plan Quality Database},
author = {Bernstein, K and Kalach, N and Wolthuis, B and Tai, C and Kravchuk, A and Bernstein, E},
abstractNote = {Purpose: To quantify VMAT plan quality using a retrospective study of over 200 clinical treated VMAT plans created using the Eclipse Treatment Planning System to create benchmarks of plan quality for a few categories of treatment sites. Methods: Using a controlled phantom geometry, various dosimetric indices were investigated to quantify dosimetric plan quality as a function of isocenter displacement from center of mass, average path length, number of arcs and PTV proximity to critical structures. Beginning with published dosimetry indices from SRS and SBRT evaluations, UDI (Unified Dosimetry Index) and modified UDI were tested before creating a new factor VMAT-DI. VMAT-DI was developed within boundaries of this project and it includes renormalized factors of conformity index, coverage index, modified gradient index and homogeneity index as well as indices based on routine clinical practice such as absolute dose max index. The plans were then evaluated using the VMAT-DI such that benchmarks for planning could be created. Results: The majority of the plans evaluated could be assigned VMAT-DI values within a range for each treatment site. However, the outliers were results of difficult planning parameters such as very irregular targets, inhomogeneities or difficult to achieve critical structure constraints. To effectively use VMAT-DI for guidance, especially for prediction of the plan quality for body sites new to the practice, VMATDI database needs to be subdivided by target complexity and by body site index/average path length factor. Conclusion: An experienced-based VMAT-DI database can be used to help analyze plans before evaluation by the physician to show that it adheres to the clinical standards of previously treated VMAT plans which will make a guideline for concluding the optimization. The introduction of institution-wide clinical planning protocols, standardizing OAR naming and constraints will make it possible to incorporate a cumulative critical structure dosimetry index such as NTCP.},
doi = {10.1118/1.4888746},
journal = {Medical Physics},
number = 6,
volume = 41,
place = {United States},
year = 2014,
month = 6
}
  • Purpose: IMPT plan design is highly dependent on planner’s experiences. VMAT plan design is relatively mature and can even be automated. The quality of IMPT plan designed by in-experienced planner could be inferior to that of VMAT plan designed by experienced planner or automatic planning software. Here we introduce a method for designing IMPT plan based on VMAT plan to ensure the IMPT plan be superior to IMRT/VMAT plan for majority clinical scenario. Methods: To design a new IMPT plan, a VMAT plan is first generated either by experienced planner or by in-house developed automatic planning system. An in-house developedmore » tool is used to generate the dose volume constrains for the IMPT plan as plan template to Eclipse TPS. The beam angles for IMPT plan are selected based on the preferred angles in the VMAT plan. IMPT plan is designed by importing the plan objectives generated from VMAT plan. Majority thoracic IMPT plans are designed using this plan approach in our center. In this work, a thoracic IMPT plan under RTOG 1308 protocol is selected to demonstrate the effectiveness and efficiency of this approach. The dosimetric indices of IMPT are compared with VMAT plan. Results: The PTV D95, lung V20, MLD, mean heart dose, esophagus D1, cord D1 are 70Gy, 31%, 17.8Gy, 25.5Gy, 73Gy, 45Gy for IMPT plan and 65.3Gy, 34%, 21.6Gy, 35Gy, 74Gy, 48Gy for VMAT plan. For majority cases, the high dose region of the normal tissue which is in proximity of PTV is comparable between IMPT and VMAT plan. The low dose region of the IMPT plan is significantly better than VMAT plan. Conclusion: Using the knowledge gained in VMAT plan design can help efficiently and effectively design high quality IMPT plan. The quality of IMPT plan can be controlled to ensure the superiority of IMPT plan compared to VMAT/IMRT plan.« less
  • Purpose: Mobius3D/MobiusFX (M3D/MFX), a commercial DICOM-RT based plan and delivery verification system, was used to compare calculated and delivered volumetric modulated arc therapy (VMAT) dose distributions using TrueBeam delivery log files (TrajectoryLogs). Methods: M3D/MFX utilizes measured linac commissioning data to generate institution specific beam models for evaluating planned and delivered dose distributions. 30 RapidArc prostate plans and 30 head and neck SmartArc plans were used in this study. For every plan, CT images, contoured structure sets, RT-plan, and RT-dose files were exported to M3D, which recalculated the patients’ planning CT dose distributions using a collapsed-cone-convolutionsuperposition algorithm. MFX utilized the acquiredmore » TrajectoryLogs to compute patients’ delivered dose distributions based on actual treatment delivery parameters. The agreement between computed and delivered dose distributions was evaluated utilizing a (3%, 3mm) global 3D-gamma analysis and dose-volume histogram changes for targets and organs at risk. Results: Excellent 3D-gamma agreements were observed for all VMAT plans. On average, for computed and delivered RapidArc and SmartArc plans the gamma passing rates were (99.0%±1.4%) and (96.8%±1.8%), respectively. The average difference for primary target prescription dose percent-coverage between calculated and delivered plans was (− 0.09%±2.52%) for RapidArc and (−2.71%±4.62%) for SmartArc cases. Similarly, the planning target mean dose differences were (1.38%±0.96%) for RapidArc and (1.17%±0.72%) for SmartArc plans. For the prostate plans, the calculated and delivered variations of the maximum dose for a 2cc volume for bladder and rectum were (1.32%±1.26%) and (0.65%±1.44%), respectively. The spinal-cord 2cc maximum dose differences of (3.26%±1.68%) were observed for the SmartArc plans. Conclusions: Clinical quality assurance practice based on linac treatment log files for verification of delivered 3D dose distributions in the patients’ geometries represents a paradigm shift from dose measurements in a phantom. This approach captures treatment planning beam modeling differences as well as the linac uncertainties during treatment delivery of the plan.« less
  • Purpose: We performed a comprehensive comparative study of the plan quality between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of prostate cancer. Methods and Materials: Eleven patients with prostate cancer treated at our institution were randomly selected for this study. For each patient, a VMAT plan and a series of IMRT plans using an increasing number of beams (8, 12, 16, 20, and 24 beams) were examined. All plans were generated using our in-house-developed automatic inverse planning (AIP) algorithm. An existing eight-beam clinical IMRT plan, which was used to treat the patient, was used asmore » the reference plan. For each patient, all AIP-generated plans were optimized to achieve the same level of planning target volume (PTV) coverage as the reference plan. Plan quality was evaluated by measuring mean dose to and dose-volume statistics of the organs at risk, especially the rectum, from each type of plan. Results: For the same PTV coverage, the AIP-generated VMAT plans had significantly better plan quality in terms of rectum sparing than the eight-beam clinical and AIP-generated IMRT plans (p < 0.0001). However, the differences between the IMRT and VMAT plans in all the dosimetric indices decreased as the number of beams used in IMRT increased. IMRT plan quality was similar or superior to that of VMAT when the number of beams in IMRT was increased to a certain number, which ranged from 12 to 24 for the set of patients studied. The superior VMAT plan quality resulted in approximately 30% more monitor units than the eight-beam IMRT plans, but the delivery time was still less than 3 min. Conclusions: Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating prostate cancer.« less
  • Purpose: Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are arc-based approaches to IMRT delivery. The objective of this study is to compare VMAT to both HT and fixed field IMRT in terms of plan quality, delivery efficiency, and accuracy. Methods: Eighteen cases including six prostate, six head-and-neck, and six lung cases were selected for this study. IMRT plans were developed using direct machine parameter optimization in the Pinnacle{sup 3} treatment planning system. HT plans were developed using a Hi-Art II planning station. VMAT plans were generated using both the Pinnacle{sup 3} SmartArc IMRT module and a home-grown arcmore » sequencing algorithm. VMAT and HT plans were delivered using Elekta's PreciseBeam VMAT linac control system (Elekta AB, Stockholm, Sweden) and a TomoTherapy Hi-Art II system (TomoTherapy Inc., Madison, WI), respectively. Treatment plan quality assurance (QA) for VMAT was performed using the IBA MatriXX system while an ion chamber and films were used for HT plan QA. Results: The results demonstrate that both VMAT and HT are capable of providing more uniform target doses and improved normal tissue sparing as compared with fixed field IMRT. In terms of delivery efficiency, VMAT plan deliveries on average took 2.2 min for prostate and lung cases and 4.6 min for head-and-neck cases. These values increased to 4.7 and 7.0 min for HT plans. Conclusions: Both VMAT and HT plans can be delivered accurately based on their own QA standards. Overall, VMAT was able to provide approximately a 40% reduction in treatment time while maintaining comparable plan quality to that of HT.« less
  • Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator (MLC) shapes. One of the main problem in the plan quality assurance is dosimetric errors associated with leaf-positional errors are difficult to analyze because they vary with MU delivered and leaf number. In this study, we calculated integrated fluence error image (IFEI) from log-files and evaluated plan quality in the area of all and individual MLC leaves scanned. Methods: The log-file reported the expected and actual position for inner 20 MLC leaves and the dose fraction every 0.25 seconds during prostate VMAT onmore » Elekta Synergy. These data were imported to in-house software that developed to calculate expected and actual fluence images from the difference of opposing leaf trajectories and dose fraction at each time. The IFEI was obtained by adding all of the absolute value of the difference between expected and actual fluence images corresponding. Results: In the area all MLC leaves scanned in the IFEI, the average and root mean square (rms) were 2.5 and 3.6 MU, the area of errors below 10, 5 and 3 MU were 98.5, 86.7 and 68.1 %, the 95 % of area was covered with less than error of 7.1 MU. In the area individual MLC leaves scanned in the IFEI, the average and rms value were 2.1 – 3.0 and 3.1 – 4.0 MU, the area of errors below 10, 5 and 3 MU were 97.6 – 99.5, 81.7 – 89.5 and 51.2 – 72.8 %, the 95 % of area was covered with less than error of 6.6 – 8.2 MU. Conclusion: The analysis of the IFEI reconstituted from log-file was provided detailed information about the delivery in the area of all and individual MLC leaves scanned.« less