skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62

Abstract

We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182–05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z {sub S} = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ{sub E}=0.38{sub −0.01}{sup +0.02} arcsec (3.2{sub −0.1}{sup +0.2} kpc) and the total enclosed mass is M {sub tot}(

Authors:
;  [1]; ;  [2];  [3]; ;  [4];  [5];  [6];  [7];  [8];
  1. Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)
  2. George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)
  3. Astronomy Department, Yale University, New Haven, CT 06511 (United States)
  4. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
  5. Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States)
  6. Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)
  7. Swinburne University of Technology, Victoria 3122 (Australia)
  8. Department of Physics and Astronomy, The University of Kansas, Malott Room 1082, 1251 Wescoe Hall Drive, Lawrence, KS 66045 (United States)
Publication Date:
OSTI Identifier:
22365660
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 789; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; EMISSION SPECTROSCOPY; GALAXIES; GALAXY CLUSTERS; GRAVITATIONAL LENSES; MASS; MASS DISTRIBUTION; NONLUMINOUS MATTER; PROBES; RED SHIFT; SPACE; TELESCOPES

Citation Formats

Wong, Kenneth C., Suyu, Sherry H., Tran, Kim-Vy H., Papovich, Casey J., Momcheva, Ivelina G., Brammer, Gabriel B., Koekemoer, Anton M., Brodwin, Mark, Gonzalez, Anthony H., Kacprzak, Glenn G., Rudnick, Gregory H., and Halkola, Aleksi. DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62. United States: N. p., 2014. Web. doi:10.1088/2041-8205/789/2/L31.
Wong, Kenneth C., Suyu, Sherry H., Tran, Kim-Vy H., Papovich, Casey J., Momcheva, Ivelina G., Brammer, Gabriel B., Koekemoer, Anton M., Brodwin, Mark, Gonzalez, Anthony H., Kacprzak, Glenn G., Rudnick, Gregory H., & Halkola, Aleksi. DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62. United States. doi:10.1088/2041-8205/789/2/L31.
Wong, Kenneth C., Suyu, Sherry H., Tran, Kim-Vy H., Papovich, Casey J., Momcheva, Ivelina G., Brammer, Gabriel B., Koekemoer, Anton M., Brodwin, Mark, Gonzalez, Anthony H., Kacprzak, Glenn G., Rudnick, Gregory H., and Halkola, Aleksi. Thu . "DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62". United States. doi:10.1088/2041-8205/789/2/L31.
@article{osti_22365660,
title = {DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT z = 1.62},
author = {Wong, Kenneth C. and Suyu, Sherry H. and Tran, Kim-Vy H. and Papovich, Casey J. and Momcheva, Ivelina G. and Brammer, Gabriel B. and Koekemoer, Anton M. and Brodwin, Mark and Gonzalez, Anthony H. and Kacprzak, Glenn G. and Rudnick, Gregory H. and Halkola, Aleksi},
abstractNote = {We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182–05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z {sub S} = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ{sub E}=0.38{sub −0.01}{sup +0.02} arcsec (3.2{sub −0.1}{sup +0.2} kpc) and the total enclosed mass is M {sub tot}(},
doi = {10.1088/2041-8205/789/2/L31},
journal = {Astrophysical Journal Letters},
number = 2,
volume = 789,
place = {United States},
year = {Thu Jul 10 00:00:00 EDT 2014},
month = {Thu Jul 10 00:00:00 EDT 2014}
}
  • We present Advanced Camera for Surveys observations of MACS J1149.5+2223, an X-ray luminous galaxy cluster at z = 0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z = 1.491, the four images of which are gravitationally magnified by 8 approx< mu approx< 23. We identify this as an L* (M{sub B} approx = -20.7), disk-dominated (B/T approx< 0.5) galaxy, forming stars at approx6 M{sub sun} yr{sup -1}. We use a robust sample of multiply imagedmore » galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N{sub halo} = 4)/P(N{sub halo} < 4) >= 10{sup 12} where N{sub halo} is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R <= 500 kpc, are measured to be M{sub tot} = (6.7 +- 0.4) x 10{sup 14} M{sub sun} and f{sub sub} = 0.25 +- 0.12, respectively. Our model also rules out recent claims of a flat density profile at approx>7sigma confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply imaged galaxies when modeling strong-lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems.« less
  • We report the discovery of a galaxy cluster at z = 1.62 located in the Spitzer Wide-Area Infrared Extragalactic survey XMM-LSS field. This structure was selected solely as an overdensity of galaxies with red Spitzer/Infrared Array Camera colors, satisfying ([3.6] - [4.5]){sub AB}> - 0.1 mag. Photometric redshifts derived from the Subaru XMM Deep Survey (BViz bands), the UKIRT Infrared Deep Survey-Ultra-Deep Survey (UKIDSS-UDS, JK bands), and from the Spitzer Public UDS survey (3.6-8.0 {mu}m) show that this cluster corresponds to a surface density of galaxies at z {approx} 1.6 that is >20{sigma} above the mean at this redshift. Wemore » obtained optical spectroscopic observations of galaxies in the cluster region using IMACS on the Magellan telescope. We measured redshifts for seven galaxies in the range z = 1.62-1.63 within 2.8 arcmin (<1.4 Mpc) of the astrometric center of the cluster. A posteriori analysis of the XMM data in this field reveal a weak (4{sigma}) detection in the [0.5-2 keV] band compatible with the expected thermal emission from such a cluster. The color-magnitude diagram of the galaxies in this cluster shows a prominent red sequence, dominated by a population of red galaxies with (z - J)>1.7 mag. The photometric-redshift probability distributions for the red galaxies are strongly peaked at z = 1.62, coincident with the spectroscopically confirmed galaxies. The rest-frame (U - B) color and scatter of galaxies on the red sequence are consistent with a mean luminosity-weighted age of 1.2 {+-} 0.1 Gyr, yielding a formation redshift z-bar{sub f}=2.35{+-}0.10, and corresponding to the last significant star formation period in these galaxies.« less
  • We present a weak-lensing analysis of the z approx = 1.4 galaxy cluster XMMU J2235.3 - 2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the approx>8sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r = 1 Mpc is (8.5more » +- 1.7) x 10{sup 14} M {sub sun}, where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6{sup +1.3} {sub -1.2} keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z approx> 1.4 in the 11 square degree survey is N approx 5 x 10{sup -3}. Therefore, the discovery of the cluster within the survey volume is a rare event with a probability approx<1% and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.« less
  • We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to modelmore » the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s{sup –1}. Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10{sup 9} M {sub ☉} (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for improving our knowledge about the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field.« less
  • The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map,more » using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.« less