skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk

Abstract

The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B{sub 0} threading the disk. When B{sub 0}⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerablemore » fraction of the wind-driven accretion rate. When B{sub 0}⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B{sub 0}⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B{sub 0}⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10{sup –8} to10{sup –7} M {sub ☉} yr{sup –1}. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.« less

Authors:
 [1]
  1. Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)
Publication Date:
OSTI Identifier:
22365276
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 791; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AMBIPOLAR DIFFUSION; HALL EFFECT; INSTABILITY; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; MATHEMATICAL SOLUTIONS; PROTOPLANETS; SIMULATION; STRESSES; TURBULENCE

Citation Formats

Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu. Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. United States: N. p., 2014. Web. doi:10.1088/0004-637X/791/2/137.
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu. Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. United States. doi:10.1088/0004-637X/791/2/137.
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu. Wed . "Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk". United States. doi:10.1088/0004-637X/791/2/137.
@article{osti_22365276,
title = {Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk},
author = {Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu},
abstractNote = {The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B{sub 0} threading the disk. When B{sub 0}⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B{sub 0}⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B{sub 0}⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B{sub 0}⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10{sup –8} to10{sup –7} M {sub ☉} yr{sup –1}. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.},
doi = {10.1088/0004-637X/791/2/137},
journal = {Astrophysical Journal},
number = 2,
volume = 791,
place = {United States},
year = {Wed Aug 20 00:00:00 EDT 2014},
month = {Wed Aug 20 00:00:00 EDT 2014}
}
  • We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B {sub z0}. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the systemmore » launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B {sub z0} is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity (Ω⋅B{sub z0}<0) is more susceptible to the magnetorotational instability (MRI) when B {sub z0} decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.« less
  • We present the results of a multi-wavelength multi-epoch survey of five evolved protoplanetary disks in the IC 348 cluster that show significant infrared variability. Using 3-8 {mu}m and 24 {mu}m photometry along with 5-40 {mu}m spectroscopy from the Spitzer Space Telescope, as well as ground-based 0.8-5 {mu}m spectroscopy, optical spectroscopy, and near-infrared photometry, covering timescales of days to years, we examine the variability in the disk, stellar, and accretion flux. We find substantial variations (10%-60%) at all infrared wavelengths on timescales of weeks to months for all of these young stellar objects. This behavior is not unique when compared tomore » other cluster members and is consistent with changes in the structure of the inner disk, most likely scale height fluctuations on a dynamical timescale. Previous observations, along with our near-infrared photometry, indicate that the stellar fluxes are relatively constant; stellar variability does not appear to drive the large changes in the infrared fluxes. Based on our near-infrared spectroscopy of the Pa{beta} and Br{gamma} lines we find that the accretion rates are variable in most of the evolved disks but the overall rates are probably too small to cause the infrared variability. We discuss other possible physical causes for the variability, including the influence of a companion, magnetic fields threading the disk, and X-ray flares.« less
  • The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magneticmore » field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.« less
  • We present Gemini-North GMOS-IFU observations of the central starburst clumps and inner wind of M82, together with WIYN DensePak IFU observations of the inner 2 x 0.9 kpc of the disk. These cover the emission lines of H{alpha}, [N II], [S II], and [S III] at a spectral resolution of 45-80 km s{sup -1}. The high signal-to-noise of the data is sufficient to accurately decompose the emission line profiles into multiple narrow components (FWHM {approx} 30-130 km s{sup -1}) superimposed on a broad (FWHM {approx} 150-350 km s{sup -1}) feature. This paper is the first of a series examining themore » optical structure of M82's disk and inner wind; here we focus on the ionized gaseous and stellar dynamics and present maps of the relevant emission line properties. Our observations show that ionized gas in the starburst core of M82 is dynamically complex with many overlapping expanding structures located at different radii. Localised line splitting of up to 100 km s{sup -1} in the narrow component is associated with expanding shells of compressed, cool, photoionized gas at the roots of the superwind outflow. We have been able to associate some of this inner-wind gas with a distinct outflow channel characterised by its dynamics and gas density patterns, and we discuss the consequences of this discovery in terms of the developing wind outflow. The broad optical emission line component is observed to become increasingly important moving outward along the outflow channel, and in general with increasing height above/below the plane. Following our recent work on the origins of this component, we associate it with turbulent gas in wind-clump interface layers and hence sites of mass loading, meaning that the turbulent mixing of cooler gas into the outflowing hot gas must become increasingly important with height, and provides powerful direct evidence for the existence of mass-loading over a large, spatially extended area reaching far into the inner wind. We discuss the consequences and implications of this. We confirm that the rotation axis of the ionized emission-line gas is offset from the stellar rotation axis and the photometric major axis by {approx}12 deg. not only within the nuclear regions but over the whole inner 2 kpc of the disk. This attests to the perturbations introduced from M82's past interactions within the M81 group. Finally, finding a turn-over in the stellar and ionized gas rotation curves on both sides of the galaxy indicates that our sight line, in places, extends at least half way through disk, and conflicts with the high levels of obscuration usually associated with the nuclear regions of M82.« less
  • The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations driven by magneto-rotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model shows turbulent accretion characterized by a Shakura-Sunyaev viscosity parameter of alpha approx 10{sup -2}, with rms density perturbations of approx10%. We measure the statistical evolution of particle orbital properties in our simulations including mean radius, eccentricity, and velocity dispersion. We confirm random walk growth in time of all threemore » properties, the first time that this has been done with direct orbital integration in a local model. We find that the growth rate increases with the box size used at least up to boxes of eight scale heights in horizontal size. However, even our largest boxes show velocity dispersions sufficiently low that collisional destruction of planetesimals should be unimportant in the inner disk throughout its lifetime. Our direct integrations agree with earlier torque measurements showing that type I migration dominates over diffusive migration by stochastic torques for most objects in the planetary core and terrestrial planet mass range. Diffusive migration remains important for objects in the mass range of kilometer-sized planetesimals. Discrepancies in the derived magnitude of turbulence between local and global simulations of magneto-rotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.« less