skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stellar age spreads in clusters as imprints of cluster-parent clump densities

Abstract

It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, ε{sub ff}, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our model predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: ε{sub ff} = 0.1 and ε{sub ff} = 0.01. When ε{sub ff} = 0.1, the half-life time is of the order of the clump free-fall time, τ{sub ff}. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-densitymore » clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τ{sub ff}, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming regions actually suggest that the timescale for star formation is of order 1-4τ{sub ff}. We also discuss how the age bin size and uncertainties in stellar ages affect our results. We conclude that there is no need to invoke the existence of multiple cluster formation mechanisms to explain the observed range of stellar age spreads in clusters.« less

Authors:
;  [1];  [2]
  1. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany)
  2. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)
Publication Date:
OSTI Identifier:
22365271
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 791; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CORRELATIONS; DATA; DENSITY; DISTRIBUTION; EQUILIBRIUM; EVOLUTION; GALAXIES; GALAXY CLUSTERS; HALF-LIFE; MASS; NEBULAE; STAR CLUSTERS; STARS

Citation Formats

Parmentier, G., Grebel, E. K., and Pfalzner, S. Stellar age spreads in clusters as imprints of cluster-parent clump densities. United States: N. p., 2014. Web. doi:10.1088/0004-637X/791/2/132.
Parmentier, G., Grebel, E. K., & Pfalzner, S. Stellar age spreads in clusters as imprints of cluster-parent clump densities. United States. doi:10.1088/0004-637X/791/2/132.
Parmentier, G., Grebel, E. K., and Pfalzner, S. Wed . "Stellar age spreads in clusters as imprints of cluster-parent clump densities". United States. doi:10.1088/0004-637X/791/2/132.
@article{osti_22365271,
title = {Stellar age spreads in clusters as imprints of cluster-parent clump densities},
author = {Parmentier, G. and Grebel, E. K. and Pfalzner, S.},
abstractNote = {It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, ε{sub ff}, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our model predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: ε{sub ff} = 0.1 and ε{sub ff} = 0.01. When ε{sub ff} = 0.1, the half-life time is of the order of the clump free-fall time, τ{sub ff}. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τ{sub ff}, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming regions actually suggest that the timescale for star formation is of order 1-4τ{sub ff}. We also discuss how the age bin size and uncertainties in stellar ages affect our results. We conclude that there is no need to invoke the existence of multiple cluster formation mechanisms to explain the observed range of stellar age spreads in clusters.},
doi = {10.1088/0004-637X/791/2/132},
journal = {Astrophysical Journal},
number = 2,
volume = 791,
place = {United States},
year = {Wed Aug 20 00:00:00 EDT 2014},
month = {Wed Aug 20 00:00:00 EDT 2014}
}
  • Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotationmore » velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.« less
  • We report the H{sup 13}CO{sup +} (J = 1-0) survey observations toward embedded clusters obtained using the Nobeyama 45 m telescope, which were performed to follow up our previous study in the C{sup 18}O survey with a dense gas tracer. Our aim is to address the evolution of cluster-forming clumps. We observed the same 14 clusters in C{sup 18}O, which are located at distances from 0.3 to 2.1 kpc with a 27'' resolution (corresponding to the Jeans length for most of our targets) in H{sup 13}CO{sup +}. We detected the 13 clumps in H{sup 13}CO{sup +} line emission and obtainedmore » the physical parameters of the clumps with radii of 0.24-0.75 pc, masses of 100-1400 M {sub sun}, and velocity widths in FWHM of 1.5-4.0 km s{sup -1}. The mean density is {approx}3.9 x 10{sup 4} cm{sup -3} and the equivalent Jeans length is {approx}0.13 pc at 20 K. We classified the H{sup 13}CO{sup +} clumps into three types, type A, type B, and type C according to the relative locations of the H{sup 13}CO{sup +} clumps and the clusters (see our previous study). Our classification represents an evolutionary trend of cluster-forming clumps because dense clumps are expected to be converted into stellar constituents, or dispersed by stellar activities. We found a similar, but clearer trend than our previous results, for derived star formation efficiencies to increase from type A to C in the H{sup 13}CO{sup +} data, and for the dense gas regions within the clumps traced by H{sup 13}CO{sup +} to be sensitive to the physical evolution of the clump-cluster systems. In addition, we found that 4 out of 13 H{sup 13}CO{sup +} clumps, which we named 'Distinct Velocity Structure Objects' (DVSOs), have distinct velocity gradients at their central parts, i.e., at the location of the embedded clusters. Assuming that the velocity gradients represent the rigid-like rotation of the clumps, we calculated the virial parameter of the H{sup 13}CO{sup +} clumps by taking into account the contribution of the rotation and found that the DVSOs tend to be gravitationally unbound. In order to explain the above physical properties for DVSOs in a consistent way, we propose a clump-clump collision model as a possible mechanism for triggering the formation of clusters.« less
  • We revisit the problem of low-mass pre-main-sequence stellar evolution and its observational consequences for where stars fall on the Hertzsprung-Russell diagram (HRD). In contrast to most previous work, our models follow stars as they grow from small masses via accretion, and we perform a systematic study of how the stars' HRD evolution is influenced by their initial radius, by the radiative properties of the accretion flow, and by the accretion history, using both simple idealized accretion histories and histories taken from numerical simulations of star cluster formation. We compare our numerical results to both non-accreting isochrones and to the positionsmore » of observed stars in the HRD, with a goal of determining whether both the absolute ages and the age dispersions inferred from non-accreting isochrones are reliable. We show that non-accreting isochrones can sometimes overestimate stellar ages for more massive stars (those with effective temperatures above {approx}3500 K), thereby explaining why non-accreting isochrones often suggest a systematic age difference between more and less massive stars in the same cluster. However, we also find the only way to produce a similar overestimate for the ages of cooler stars is if these stars grow from {approx}0.01 M{sub sun} seed protostars that are an order of magnitude smaller than predicted by current theoretical models, and if the size of the seed protostar correlates systematically with the final stellar mass at the end of accretion. We therefore conclude that, unless both of these conditions are met, inferred ages and age spreads for cool stars are reliable, at least to the extent that the observed bolometric luminosities and temperatures are accurate. Finally, we note that the time dependence of the mass accretion rate has remarkably little effect on low-mass stars' evolution on the HRD, and that such time dependence may be neglected for all stars except those with effective temperatures above {approx}4000 K.« less
  • We trace the tidal Stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) using Red Clump (RC) stars from the catalog of the Sloan Digital Sky Survey-Data Release 6, in the range 150{sup 0} {approx}< R.A. {approx}< 220{sup 0}, corresponding to the range of orbital azimuth 220{sup 0} {approx}< {Lambda} {approx}< 290{sup 0}. Substructures along the line of sight (los) are identified as significant peaks in the differential star count profiles (SCPs) of candidate RC stars. A proper modeling of the SCPs allows us to obtain (1) {<=}10% accurate, purely differential distances with respect to the main body of Sgr,more » (2) estimates of the FWHM along the los, and (3) estimates of the local density, for each detected substructure. In the range 255{sup 0} {approx}< {Lambda} {approx}< 290{sup 0} we cleanly and continuously trace various coherent structures that can be ascribed to the Stream, in particular: the well-known northern portion of the leading arm, running from d {approx_equal} 43 kpc at {Lambda} {approx_equal} 290{sup 0} to d {approx_equal} 30 kpc at {Lambda} {approx_equal} 255{sup 0}, and a more nearby coherent series of detections lying at a constant distance d {approx_equal} 25 kpc, that can be identified with a wrap of the trailing arm. The latter structure, predicted by several models of the disruption of Sgr dSph, was never traced before; comparison with existing models indicates that the difference in distance between these portions of the leading and trailing arms may provide a powerful tool to discriminate between theoretical models assuming different shapes of the Galactic potential. A further, more distant wrap in the same portion of the sky is detected only along a couple of los. For {Lambda} {approx}< 255{sup 0} the detected structures are more complex and less easily interpreted. We are confident of being able to trace the continuation of the leading arm down to {Lambda} {approx_equal} 220{sup 0} and d {approx_equal} 20 kpc; the trailing arm is seen up to {Lambda} {approx_equal} 240{sup 0} where it is replaced by more distant structures. Possible detections of more nearby wraps and of the Virgo Stellar Stream are also discussed. These measured properties provide a coherent set of observational constraints for the next generation of theoretical models of the disruption of Sgr.« less
  • Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality onlymore » a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.« less