# The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces

## Abstract

Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in L{sup p}, 2≤p<∞. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents p 'beyond the index p=∞', that is, for spaces of Hölder functions and BMO. Bibliography: 14 titles. (paper)

- Authors:

- St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation)

- Publication Date:

- OSTI Identifier:
- 22364926

- Resource Type:
- Journal Article

- Resource Relation:
- Journal Name: Sbornik. Mathematics; Journal Volume: 205; Journal Issue: 7; Other Information: Country of input: International Atomic Energy Agency (IAEA)

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 97 MATHEMATICAL METHODS AND COMPUTING; CALCULATION METHODS; FUNCTIONS; INDEXES; MATHEMATICAL SOLUTIONS; SPACE

### Citation Formats

```
Osipov, N. N., E-mail: nicknick@pdmi.ras.ru.
```*The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces*. United States: N. p., 2014.
Web. doi:10.1070/SM2014V205N07ABEH004407.

```
Osipov, N. N., E-mail: nicknick@pdmi.ras.ru.
```*The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces*. United States. doi:10.1070/SM2014V205N07ABEH004407.

```
Osipov, N. N., E-mail: nicknick@pdmi.ras.ru. Thu .
"The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces". United States.
doi:10.1070/SM2014V205N07ABEH004407.
```

```
@article{osti_22364926,
```

title = {The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces},

author = {Osipov, N. N., E-mail: nicknick@pdmi.ras.ru},

abstractNote = {Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in L{sup p}, 2≤p<∞. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents p 'beyond the index p=∞', that is, for spaces of Hölder functions and BMO. Bibliography: 14 titles. (paper)},

doi = {10.1070/SM2014V205N07ABEH004407},

journal = {Sbornik. Mathematics},

number = 7,

volume = 205,

place = {United States},

year = {Thu Jul 31 00:00:00 EDT 2014},

month = {Thu Jul 31 00:00:00 EDT 2014}

}

Other availability

Save to My Library

You must Sign In or Create an Account in order to save documents to your library.