skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces

Abstract

Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in L{sup p}, 2≤p<∞. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents p 'beyond the index p=∞', that is, for spaces of Hölder functions and BMO. Bibliography: 14 titles. (paper)

Authors:
 [1]
  1. St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation)
Publication Date:
OSTI Identifier:
22364926
Resource Type:
Journal Article
Resource Relation:
Journal Name: Sbornik. Mathematics; Journal Volume: 205; Journal Issue: 7; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; CALCULATION METHODS; FUNCTIONS; INDEXES; MATHEMATICAL SOLUTIONS; SPACE

Citation Formats

Osipov, N. N., E-mail: nicknick@pdmi.ras.ru. The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces. United States: N. p., 2014. Web. doi:10.1070/SM2014V205N07ABEH004407.
Osipov, N. N., E-mail: nicknick@pdmi.ras.ru. The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces. United States. doi:10.1070/SM2014V205N07ABEH004407.
Osipov, N. N., E-mail: nicknick@pdmi.ras.ru. Thu . "The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces". United States. doi:10.1070/SM2014V205N07ABEH004407.
@article{osti_22364926,
title = {The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces},
author = {Osipov, N. N., E-mail: nicknick@pdmi.ras.ru},
abstractNote = {Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in L{sup p}, 2≤p<∞. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents p 'beyond the index p=∞', that is, for spaces of Hölder functions and BMO. Bibliography: 14 titles. (paper)},
doi = {10.1070/SM2014V205N07ABEH004407},
journal = {Sbornik. Mathematics},
number = 7,
volume = 205,
place = {United States},
year = {Thu Jul 31 00:00:00 EDT 2014},
month = {Thu Jul 31 00:00:00 EDT 2014}
}