skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS

Abstract

Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward.more » Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.« less

Authors:
;  [1]; ;  [2];  [3]
  1. Astrophysics Science Division, Laboratory for High Energy Astrophysics, Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
  2. Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)
  3. SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)
Publication Date:
OSTI Identifier:
22364662
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 798; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; A CODES; ANISOTROPY; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; GALAXY CLUSTERS; HELMHOLTZ INSTABILITY; LIMITING VALUES; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; PLASMA; RESOLUTION; SHEAR; THERMAL CONDUCTION; TURBULENCE; VELOCITY; VISCOSITY; X RADIATION; X-RAY GALAXIES

Citation Formats

ZuHone, J. A., Markevitch, M., Kunz, M. W., Stone, J. M., and Biffi, V. THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS. United States: N. p., 2015. Web. doi:10.1088/0004-637X/798/2/90.
ZuHone, J. A., Markevitch, M., Kunz, M. W., Stone, J. M., & Biffi, V. THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS. United States. doi:10.1088/0004-637X/798/2/90.
ZuHone, J. A., Markevitch, M., Kunz, M. W., Stone, J. M., and Biffi, V. Sat . "THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS". United States. doi:10.1088/0004-637X/798/2/90.
@article{osti_22364662,
title = {THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS},
author = {ZuHone, J. A. and Markevitch, M. and Kunz, M. W. and Stone, J. M. and Biffi, V.},
abstractNote = {Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.},
doi = {10.1088/0004-637X/798/2/90},
journal = {Astrophysical Journal},
number = 2,
volume = 798,
place = {United States},
year = {Sat Jan 10 00:00:00 EST 2015},
month = {Sat Jan 10 00:00:00 EST 2015}
}
  • We carried out three-dimensional magnetohydrodynamic simulations to study the effects of plasma viscosity on the formation of sharp discontinuities of density and temperature distributions, cold fronts, in clusters of galaxies. By fixing the gravitational potential that confines the cool, dense plasma in a moving subcluster, we simulated its interaction with the hot, lower density plasma around the subcluster. At the initial state, the intracluster medium (ICM) is assumed to be threaded by uniform magnetic fields. The enhancement of plasma viscosity along the direction of magnetic fields is incorporated as anisotropic viscosity depending on the direction of magnetic fields. We foundmore » that the Kelvin-Helmholtz instability at the surface of the subcluster grows even in models with anisotropic viscosity, because its effects on the velocity shear across the magnetic field lines are suppressed. We also found that magnetic fields around the interface between the subcluster and ICM are amplified even in the presence of viscosity, while magnetic fields behind the subcluster are amplified up to {beta}{sup -1} {approx} 0.01 in models with viscosity, whereas they are amplified up to {beta}{sup -1} {approx} 0.1 in models without viscosity, where {beta} is the ratio of gas pressure to magnetic pressure.« less
  • Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are 'draped' parallel to the front surfaces, suppressing conduction perpendicular to the sloshing fronts. We present a series of MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature distribution of the core and the appearance of the cold fronts. Though magnetic field lines are draping parallel to themore » front surfaces, preventing conduction directly across them, the temperature jumps across the fronts are nevertheless reduced. The geometry of the field is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front that are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may nevertheless be preserved. By modifying the gas density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps seen in Chandra observations of cold front clusters do not form. Therefore, the presence of cold fronts in hot clusters is in contradiction with our simulations with full Spitzer conduction. This suggests that the presence of cold fronts in hot clusters could be used to place upper limits on conduction in the bulk of the intracluster medium. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central (r {approx} 5 kpc) regions of the cool core (where something else is required, such as active galactic nucleus feedback), it reduces significantly the mass of gas that experiences a cooling catastrophe outside those small radii.« less
  • We examine the incidence of cold fronts in a large sample of galaxy clusters extracted from a (512 h {sup -1} Mpc) hydrodynamic/N-body cosmological simulation with adiabatic gas physics computed with the Enzo adaptive mesh refinement code. This simulation contains a sample of roughly 4000 galaxy clusters with M {>=}10{sup 14} M{sub sun} at z = 0. For each simulated galaxy cluster, we have created mock 0.3-8.0 keV X-ray observations and spectroscopic-like temperature maps. We have searched these maps with a new automated algorithm to identify the presence of cold fronts in projection. Using a threshold of a minimum ofmore » 10 cold front pixels in our images, corresponding to a total comoving length L{sub cf}>156 h {sup -1} kpc, we find that roughly 10%-12% of all projections in a mass-limited sample would be classified as cold front clusters. Interestingly, the fraction of clusters with extended cold front features in our synthetic maps of a mass-limited sample trends only weakly with redshift out to z = 1.0. However, when using different selection functions, including a simulated flux limit, the trending with redshift changes significantly. The likelihood of finding cold fronts in the simulated clusters in our sample is a strong function of cluster mass. In clusters with M>7.5 x 10{sup 14} M{sub sun} the cold front fraction is 40%-50%. We also show that the presence of cold fronts is strongly correlated with disturbed morphology as measured by quantitative structure measures. Finally, we find that the incidence of cold fronts in the simulated cluster images is strongly dependent on baryonic physics.« less
  • Observations of the cores of nearby galaxy clusters show H{alpha} and molecular emission-line filaments. We argue that these are the result of local thermal instability in a globally stable galaxy cluster core. We present local, high-resolution, two-dimensional magnetohydrodynamic simulations of thermal instability for conditions appropriate to the intracluster medium (ICM); the simulations include anisotropic thermal conduction along magnetic field lines and adiabatic cosmic rays. Thermal conduction suppresses thermal instability along magnetic field lines on scales smaller than the Field length ({approx}>10 kpc for the hot, diffuse ICM). We show that the Field length in the cold medium must be resolvedmore » both along and perpendicular to the magnetic field in order to obtain numerically converged results. Because of negligible conduction perpendicular to the magnetic field, thermal instability leads to fine scale structure in the perpendicular direction. Filaments of cold gas along magnetic field lines are thus a natural consequence of thermal instability with anisotropic thermal conduction. This is true even in the fully nonlinear regime and even for dynamically weak magnetic fields. The filamentary structure in the cold gas is also imprinted on the diffuse X-ray-emitting plasma in the neighboring hot ICM. Nonlinearly, filaments of cold ({approx}10{sup 4} K) gas should have lengths (along the magnetic field) comparable to the Field length in the cold medium {approx}10{sup -4} pc. Observations show, however, that the atomic filaments in clusters are far more extended, {approx}10 kpc. Cosmic-ray pressure support (or a small-scale turbulent magnetic pressure) may resolve this discrepancy: even a small cosmic-ray pressure in the diffuse ICM, {approx}10{sup -4} of the thermal pressure, can be adiabatically compressed to provide significant pressure support in cold filaments. This is qualitatively consistent with the large population of cosmic rays invoked to explain the atomic and molecular line ratios observed in filaments.« less
  • Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusionsmore » about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities {approx}> 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.« less