skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

Abstract

We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution ofmore » [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less

Authors:
; ; ; ;  [1];  [2]; ;  [3]
  1. Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China)
  2. Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany)
  3. Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)
Publication Date:
OSTI Identifier:
22364633
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 798; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CARBON; COMPARATIVE EVALUATIONS; COSMOCHEMISTRY; ELECTROMAGNETIC PULSES; GALACTIC EVOLUTION; GALAXIES; IRON; NITROGEN; NUCLEOSYNTHESIS; POTENTIALS; R PROCESS; RESOLUTION; STARS; TELESCOPES; TRITIUM

Citation Formats

Li, Hai-Ning, Zhao, Gang, Wang, Liang, Wang, Wei, Yuan, Hailong, Christlieb, Norbert, Zhang, Yong, and Hou, Yonghui, E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS. United States: N. p., 2015. Web. doi:10.1088/0004-637X/798/2/110.
Li, Hai-Ning, Zhao, Gang, Wang, Liang, Wang, Wei, Yuan, Hailong, Christlieb, Norbert, Zhang, Yong, & Hou, Yonghui, E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS. United States. doi:10.1088/0004-637X/798/2/110.
Li, Hai-Ning, Zhao, Gang, Wang, Liang, Wang, Wei, Yuan, Hailong, Christlieb, Norbert, Zhang, Yong, and Hou, Yonghui, E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn. Sat . "SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS". United States. doi:10.1088/0004-637X/798/2/110.
@article{osti_22364633,
title = {SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS},
author = {Li, Hai-Ning and Zhao, Gang and Wang, Liang and Wang, Wei and Yuan, Hailong and Christlieb, Norbert and Zhang, Yong and Hou, Yonghui, E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn},
abstractNote = {We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.},
doi = {10.1088/0004-637X/798/2/110},
journal = {Astrophysical Journal},
number = 2,
volume = 798,
place = {United States},
year = {Sat Jan 10 00:00:00 EST 2015},
month = {Sat Jan 10 00:00:00 EST 2015}
}
  • We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurementsmore » accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.« less
  • We report Zn abundances for 18 very metal-poor stars studied in our previous work, covering the metallicity range -3.2< [Fe/H] <-2.5. The [Zn/Fe] values of most stars show an increasing trend with decreasing [Fe/H] in this metallicity range, confirming the results found by previous studies. However, the extremely metal-poor star BS 16920-017([Fe/H] =-3.2) exhibits a significantly high [Zn/Fe] ratio ([Zn/Fe] = +1.0). Comparison of the chemical abundances of this object with HD 4306, which has similar atmospheric parameters to BS 16920-017, clearly demonstrates a deficiency of {alpha} elements and neutron-capture elements in this star, along with enhancements of Mn andmore » Ni, as well as Zn. The association with a hypernova explosion that has been proposed to explain the high Zn abundance ratios found in extremely metal-poor stars is a possible explanation, although further studies are required to fully interpret the abundance pattern of this object.« less
  • The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imagingmore » Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.« less
  • We investigate atmospheric properties of 35 stable RRab stars that possess the full ranges of period, light amplitude, and metal abundance found in Galactic RR Lyrae stars. Our results are derived from several thousand echelle spectra obtained over several years with the du Pont telescope of Las Campanas Observatory. Radial velocities of metal lines and the H α line were used to construct curves of radial velocity versus pulsation phase. From these we estimated radial velocity amplitudes for metal lines (formed near the photosphere) and H α Doppler cores (formed at small optical depths). We also measured H α emissionmore » fluxes when they appear during primary light rises. Spectra shifted to rest wavelengths, binned into small phase intervals, and co-added were used to perform model atmospheric and abundance analyses. The derived metallicities and those of some previous spectroscopic surveys were combined to produce a new calibration of the Layden abundance scale. We then divided our RRab sample into metal-rich (disk) and metal-poor (halo) groups at [Fe/H] = −1.0; the atmospheres of RRab families, so defined, differ with respect to (a) peak strength of H α emission flux, (b) H α radial velocity amplitude, (c) dynamical gravity, (d) stellar radius variation, (e) secondary acceleration during the photometric bump that precedes minimum light, and (f) duration of H α line-doubling. We also detected H α line-doubling during the “bump” in the metal-poor family, but not in the metal-rich one. Although all RRab probably are core helium-burning horizontal branch stars, the metal-rich group appears to be a species sui generis.« less
  • We present chemical abundance measurements of three stars in the ultra-faintdwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark EnergySurvey. Using high resolution spectroscopic observations we measure themetallicity of the three stars as well as abundance ratios of severalmore » $$\alpha$$-elements, iron-peak elements, and neutron-capture elements. Theabundance pattern is relatively consistent among all three stars, which have alow average metallicity of [Fe/H] $$\sim -2.6$$ and are not $$\alpha$$-enhanced([$$\alpha$$/Fe] $$\sim 0.0$$). This result is unexpected when compared to otherlow-metallicity stars in the Galactic halo and other ultra-faint dwarfs andhints at an entirely different mechanism for the enrichment of Hor I comparedto other satellites. We discuss possible scenarios that could lead to thisobserved nucleosynthetic signature including extended star formation, aPopulation III supernova, and a possible association with the Large MagellanicCloud.« less