skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE

Abstract

In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified ''YSOs'' to be at least 63%, which suggests that the star formation rate previously determinedmore » from YSOs is likely to be at least a factor of three too high.« less

Authors:
; ; ;  [1]
  1. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)
Publication Date:
OSTI Identifier:
22364470
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 799; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; EMISSION; MAIN SEQUENCE STARS; MILKY WAY; PROTOSTARS; RADIANT HEAT TRANSFER; STAR EVOLUTION; STAR MODELS

Citation Formats

Koepferl, Christine M., Robitaille, Thomas P., Morales, Esteban F. E., and Johnston, Katharine G., E-mail: koepferl@mpia.de. MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE. United States: N. p., 2015. Web. doi:10.1088/0004-637X/799/1/53.
Koepferl, Christine M., Robitaille, Thomas P., Morales, Esteban F. E., & Johnston, Katharine G., E-mail: koepferl@mpia.de. MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE. United States. doi:10.1088/0004-637X/799/1/53.
Koepferl, Christine M., Robitaille, Thomas P., Morales, Esteban F. E., and Johnston, Katharine G., E-mail: koepferl@mpia.de. 2015. "MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE". United States. doi:10.1088/0004-637X/799/1/53.
@article{osti_22364470,
title = {MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE},
author = {Koepferl, Christine M. and Robitaille, Thomas P. and Morales, Esteban F. E. and Johnston, Katharine G., E-mail: koepferl@mpia.de},
abstractNote = {In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified ''YSOs'' to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.},
doi = {10.1088/0004-637X/799/1/53},
journal = {Astrophysical Journal},
number = 1,
volume = 799,
place = {United States},
year = 2015,
month = 1
}
  • We present a new method for the evaluation of the age and age spread among pre-main-sequence (PMS) stars in star-forming regions in the Magellanic Clouds, accounting simultaneously for photometric errors, unresolved binarity, differential extinction, stellar variability, accretion, and crowding. The application of the method is performed with the statistical construction of synthetic color-magnitude diagrams (CMDs) using isochrones from two families of PMS evolutionary models. We convert each isochrone into two-dimensional probability distributions of artificial PMS stars in the CMD by applying the aforementioned biases that dislocate these stars from their original CMD positions. A maximum-likelihood technique is then applied tomore » derive the probability for each observed star to have a certain age as well as the best age for the entire cluster. We apply our method to the photometric catalog of {approx}2000 PMS stars in the young association LH 95 in the Large Magellanic Cloud, based on the deepest HST/ACS imaging ever performed toward this galaxy, with a detection limit of V {approx} 28, corresponding to M {approx} 0.2 M o-dot. We assume the initial mass function and reddening distribution for the system, as they have been previously derived by us. Our treatment shows that the age determination is very sensitive to the considered grid of evolutionary models and the assumed binary fraction. The age of LH 95 is found to vary from 2.8 Myr to 4.4 Myr, depending on these factors. We evaluate the accuracy of our age estimation and find that the method is fairly accurate in the PMS regime, while the precision of the measurement of the age is lower at higher luminosities. Our analysis allows us to disentangle a real age spread from the apparent CMD broadening caused by the physical and observational biases. We find that LH 95 hosts an age spread that is represented well by a Gaussian distribution with an FWHM of the order of 2.8-4.4 Myr depending on the model and binary fraction. We detect a dependence of the average age of the system with the stellar mass. This dependence does not appear to have any physical meaning, being rather due to imperfections of the PMS evolutionary models, which tend to predict lower ages for the intermediate-mass and higher ages for the low-mass stars.« less
  • The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less
  • We have carried out near-infrared polarimetry toward the boundary of the Central Molecular Zone, in the field of (–1.°4 ≲ l ≲ –0.°3 and 1.°0 ≲ l ≲ 2.°9, |b| ≲ 0.°1), using the near-infrared polarimetric camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. We have selected 112 intrinsically polarized sources on the basis of the estimate of interstellar polarization on Stokes Q/I – U/I planes. The selected sources are brighter than K{sub S} = 14.5 mag and have polarimetric uncertainty δP < 1%. Ten of these distinctive polarized sources are fit well with spectral energy distributions ofmore » young stellar objects when using the photometry in the archive of the Spitzer Space Telescope mid-infrared data. However, many sources have spectral energy distributions of normal stars suffering from heavy interstellar extinction; these might be stars behind dark clouds. Due to the small number of distinctive polarized sources and candidates of young stellar objects, we cannot judge if they are declining in number outside the Central Molecular Zone. Many massive candidates for young stellar objects in the literature have only small intrinsic polarization. This might suggest that their masses are 4-15 M {sub ☉}, whose intrinsic polarization has been expected to be small.« less
  • A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction ..beta..approx.10/sup -2/ to 10/sup -3/ of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for youngmore » stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes.« less