skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM

Abstract

We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could be stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to amore » planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.« less

Authors:
 [1];  [2];  [3];  [4]
  1. Korea Astronomy and Space Science Institute (Korea, Republic of)
  2. Institute for Astronomy, University of Hawaii-Manoa, Honolulu, HI (United States)
  3. Johns Hopkins University, Baltimore, MD (United States)
  4. Toruń Centre for Astronomy of the Nicolai Copernicus University, Grudziadzka 5 (Poland)
Publication Date:
OSTI Identifier:
22364448
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 799; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BINARY STARS; CHAOS THEORY; COMPARATIVE EVALUATIONS; ECLIPSE; MASS; ORBITS; PERIODICITY; PHASE SPACE; PLANETS; SATELLITES; STABILITY; STAR EVOLUTION

Citation Formats

Hinse, Tobias C., Haghighipour, Nader, Kostov, Veselin B., and Goździewski, Krzysztof, E-mail: tchinse@gmail.com. PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM. United States: N. p., 2015. Web. doi:10.1088/0004-637X/799/1/88.
Hinse, Tobias C., Haghighipour, Nader, Kostov, Veselin B., & Goździewski, Krzysztof, E-mail: tchinse@gmail.com. PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM. United States. doi:10.1088/0004-637X/799/1/88.
Hinse, Tobias C., Haghighipour, Nader, Kostov, Veselin B., and Goździewski, Krzysztof, E-mail: tchinse@gmail.com. Tue . "PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM". United States. doi:10.1088/0004-637X/799/1/88.
@article{osti_22364448,
title = {PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM},
author = {Hinse, Tobias C. and Haghighipour, Nader and Kostov, Veselin B. and Goździewski, Krzysztof, E-mail: tchinse@gmail.com},
abstractNote = {We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could be stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to a planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.},
doi = {10.1088/0004-637X/799/1/88},
journal = {Astrophysical Journal},
number = 1,
volume = 799,
place = {United States},
year = {Tue Jan 20 00:00:00 EST 2015},
month = {Tue Jan 20 00:00:00 EST 2015}
}
  • We report the discovery of a transiting, gas giant circumbinary planet orbiting the eclipsing binary KIC 4862625 and describe our independent discovery of the two transiting planets orbiting Kepler-47. We describe a simple and semi-automated procedure for identifying individual transits in light curves and present our follow-up measurements of the two circumbinary systems. For the KIC 4862625 system, the 0.52 {+-} 0.018 R{sub Jupiter} radius planet revolves every {approx}138 days and occults the 1.47 {+-} 0.08 M{sub Sun }, 1.7 {+-} 0.06 R{sub Sun} F8 IV primary star producing aperiodic transits of variable durations commensurate with the configuration of themore » eclipsing binary star. Our best-fit model indicates the orbit has a semi-major axis of 0.64 AU and is slightly eccentric, e = 0.1. For the Kepler-47 system, we confirm the results of Orosz et al. Modulations in the radial velocity of KIC 4862625A are measured both spectroscopically and photometrically, i.e., via Doppler boosting, and produce similar results.« less
  • Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the binary and the protoplanetary disk acts to raise impact velocities between kilometer-sized planetesimals beyond their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that a primordial population of 'large' planetesimals (100 km or more in size), as produced by turbulent concentration mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viablemore » in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body simulations to show that kilometer-sized planetesimals and collisional debris can drift and be trapped in a belt close to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming 'indestructible' seeds that can accrete other planetesimals in situ despite the large impact speeds. We find that large, indestructible planetesimals can be formed close to the central binary within 10{sup 5} yr, therefore showing that even a primordial population of 'small' planetesimals can feasibly form a planet.« less
  • The recently discovered circumbinary planets (Kepler-16 b, Kepler 34-b, Kepler 35-b) represent the first direct evidence of the viability of planet formation in circumbinary orbits. We report on the results of N-body simulations investigating planetesimal accretion in the Kepler-16 b system, focusing on the range of impact velocities under the influence of both stars' gravitational perturbation and friction from a putative protoplanetary disk. Our results show that planet formation might be effectively inhibited for a large range in semimajor axis (1.75 {approx}< a{sub P} {approx}< 4 AU), suggesting that the planetary core must have either migrated from outside 4 AUmore » or formed in situ very close to its current location.« less
  • We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass ratio of q = 0.2994 {+-} 0.0031. When combined with the inclination, i 90.{sup 0}3401{sup +0.0016}{sub -0.0019}, measured from the Kepler photometric data by Doyle et al. (D11), we derive dynamical masses for the Kepler-16 components of M{sub A} = 0.654 {+-} 0.017 M{sub Sun} and M{sub B} = 0.1959 {+-} 0.0031 M{sub Sun }, a precision of 2.5% and 1.5%, respectively. Our results confirm at the {approx}2% level themore » mass-ratio derived by D11 with their photometric-dynamical model (PDM), q = 0.2937 {+-} 0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars and provide an important direct test of the results from the PDM technique.« less
  • Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 {+-} 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1.{sup 0}6 {+-} 2.{sup 0}4. Therefore, the three largest sources of angular momentum-the stellar orbit, the planetary orbit, and the primary's rotation-are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separationmore » (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the 'pseudosynchronous' period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2-4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.« less