skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space

Abstract

We consider a certain model operator acting in a subspace of a fermionic Fock space. We obtain an analogue of Faddeev's equation. We describe the location of the essential spectrum of the operator under consideration and show that the essential spectrum consists of the union of at most four segments. Bibliography: 19 titles.

Authors:
 [1];  [2];  [3]
  1. Navoi State Pedagogical Institute, Navoi (Uzbekistan)
  2. Universiti Putra Malaysia, Selangor (Malaysia)
  3. Malaysia – Japan International Institute of Technology, Kuala Lumpur (Malaysia)
Publication Date:
OSTI Identifier:
22364157
Resource Type:
Journal Article
Journal Name:
Sbornik. Mathematics
Additional Journal Information:
Journal Volume: 205; Journal Issue: 12; Other Information: Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1064-5616
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; CALCULATION METHODS; FADDEEV EQUATIONS; FERMIONS; MATHEMATICAL OPERATORS; MATHEMATICAL SOLUTIONS; MATHEMATICAL SPACE

Citation Formats

Yodgorov, G R, Ismail, F, and Muminov, Z I. A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space. United States: N. p., 2014. Web. doi:10.1070/SM2014V205N12ABEH004438.
Yodgorov, G R, Ismail, F, & Muminov, Z I. A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space. United States. doi:10.1070/SM2014V205N12ABEH004438.
Yodgorov, G R, Ismail, F, and Muminov, Z I. Wed . "A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space". United States. doi:10.1070/SM2014V205N12ABEH004438.
@article{osti_22364157,
title = {A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space},
author = {Yodgorov, G R and Ismail, F and Muminov, Z I},
abstractNote = {We consider a certain model operator acting in a subspace of a fermionic Fock space. We obtain an analogue of Faddeev's equation. We describe the location of the essential spectrum of the operator under consideration and show that the essential spectrum consists of the union of at most four segments. Bibliography: 19 titles.},
doi = {10.1070/SM2014V205N12ABEH004438},
journal = {Sbornik. Mathematics},
issn = {1064-5616},
number = 12,
volume = 205,
place = {United States},
year = {2014},
month = {12}
}