skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

Abstract

Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be the result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.

Authors:
 [1]
  1. Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)
Publication Date:
OSTI Identifier:
22364127
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 778; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCELERATION; ASTROPHYSICS; BUBBLES; COSMIC GAMMA SOURCES; COSMIC NUCLEI; COSMIC PHOTONS; COSMIC RAY PROPAGATION; DIFFUSION; EMISSION SPECTRA; GAMMA RADIATION; INJECTION; LUMINOSITY; MILKY WAY; PARTICLE PRODUCTION; PLASMA; STOCHASTIC PROCESSES; TELESCOPES

Citation Formats

Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS. United States: N. p., 2013. Web. doi:10.1088/2041-8205/778/1/L20.
Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS. United States. doi:10.1088/2041-8205/778/1/L20.
Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl. Wed . "FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS". United States. doi:10.1088/2041-8205/778/1/L20.
@article{osti_22364127,
title = {FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS},
author = {Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl},
abstractNote = {Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be the result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.},
doi = {10.1088/2041-8205/778/1/L20},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 778,
place = {United States},
year = {Wed Nov 20 00:00:00 EST 2013},
month = {Wed Nov 20 00:00:00 EST 2013}
}
  • We promote the idea of multi-component Dark Matter (DM) to explain results from both direct and indirect detection experiments. In these models as contribution of each DM candidate to relic abundance is summed up to meet WMAP/Planck measurements of Ω{sub DM}, these candidates have larger annihilation cross-sections compared to the single-component DM models. We illustrate this fact by introducing an extra scalar to the popular single real scalar DM model. We also present detailed calculations for the vacuum stability bounds, perturbative unitarity and triviality constraints on this model. As direct detection experimental results still show some conflict, we kept ourmore » options open, discussing different scenarios with different DM mass zones. In the framework of our model we make an interesting observation: the existing direct detection experiments like CDMS II, CoGeNT, CRESST II, XENON 100 or LUX together with the observation of excess low energy γ-ray from galactic centre and Fermi bubble by Fermi Gamma-ray Space Telescope (FGST) already have the capability to distinguish between different DM halo profiles.« less
  • We promote the idea of multi-component Dark Matter (DM) to explain results from both direct and indirect detection experiments. In these models as contribution of each DM candidate to relic abundance is summed up to meet WMAP/Planck measurements of Ω{sub DM}, these candidates have larger annihilation cross-sections compared to the single-component DM models. We illustrate this fact by introducing an extra scalar to the popular single real scalar DM model. We also present detailed calculations for the vacuum stability bounds, perturbative unitarity and triviality constraints on this model. As direct detection experimental results still show some conflict, we kept ourmore » options open, discussing different scenarios with different DM mass zones. In the framework of our model we make an interesting observation: the existing direct detection experiments like CDMS II, CoGeNT, CRESST II, XENON 100 or LUX together with the observation of excess low energy γ-ray from galactic centre and Fermi bubble by Fermi Gamma-ray Space Telescope (FGST) already have the capability to distinguish between different DM halo profiles.« less
  • Here,we report an analysis of the interstellar γ-ray emission in the third Galactic quadrant measured by the Fermi Large Area Telescope. The window encompassing the Galactic plane from longitude 210° to 250° has kinematically well-defined segments of the Local and the Perseus arms, suitable to study the cosmic-ray (CR) densities across the outer Galaxy. We measure no large gradient with Galactocentric distance of the γ-ray emissivities per interstellar H atom over the regions sampled in this study. The gradient depends, however, on the optical depth correction applied to derive the H I column densities. No significant variations are found inmore » the interstellar spectra in the outer Galaxy, indicating similar shapes of the CR spectrum up to the Perseus arm for particles with GeV to tens of GeV energies. The emissivity as a function of Galactocentric radius does not show a large enhancement in the spiral arms with respect to the interarm region. The measured emissivity gradient is flatter than expectations based on a CR propagation model using the radial distribution of supernova remnants and uniform diffusion properties. In this context, observations require a larger halo size and/or a flatter CR source distribution than usually assumed. The molecular mass calibrating ratio, X CO = N(H 2)/W CO, is found to be (2.08 ± 0.11) × 10 20 cm -2(K km s –1) –1 in the Local arm clouds and is not significantly sensitive to the choice of H I spin temperature. No significant variations are found for clouds in the interarm region.« less