skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experiments of water formation on warm silicates

Abstract

When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09more » Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.« less

Authors:
;  [1]
  1. Physics Department, Syracuse University, Syracuse, NY 13244 (United States)
Publication Date:
OSTI Identifier:
22356665
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 788; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ATOMS; CROSS SECTIONS; DESORPTION; HOT ATOM CHEMISTRY; HYDROGEN; HYDROGENATION; LAYERS; MOLECULES; OXYGEN; OZONE; SILICATES

Citation Formats

He, Jiao, and Vidali, Gianfranco, E-mail: gvidali@syr.edu. Experiments of water formation on warm silicates. United States: N. p., 2014. Web. doi:10.1088/0004-637X/788/1/50.
He, Jiao, & Vidali, Gianfranco, E-mail: gvidali@syr.edu. Experiments of water formation on warm silicates. United States. doi:10.1088/0004-637X/788/1/50.
He, Jiao, and Vidali, Gianfranco, E-mail: gvidali@syr.edu. 2014. "Experiments of water formation on warm silicates". United States. doi:10.1088/0004-637X/788/1/50.
@article{osti_22356665,
title = {Experiments of water formation on warm silicates},
author = {He, Jiao and Vidali, Gianfranco, E-mail: gvidali@syr.edu},
abstractNote = {When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.},
doi = {10.1088/0004-637X/788/1/50},
journal = {Astrophysical Journal},
number = 1,
volume = 788,
place = {United States},
year = 2014,
month = 6
}
  • It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Temperingmore » increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.« less
  • The gas-phase chemistry of water in protoplanetary disks is analyzed with a model based on X-ray heating and ionization of the disk atmosphere. Several uncertain processes appear to play critical roles in generating the column densities of warm water that are detected from disks at infrared wavelengths. The dominant factors are the reactions that form molecular hydrogen, including formation on warm grains, and the ionization and heating of the atmosphere. All of these can work together to produce a region of high water abundances in the molecular transition layer of the inner disk atmosphere, where atoms are transformed into molecules,more » the temperature drops from thousands to hundreds of Kelvins, and the ionization begins to be dominated by the heavy elements. Grain formation of molecular hydrogen and mechanical heating of the atmosphere can play important roles in this region and directly affect the amount of warm water in protoplanetary disk atmospheres. Thus, it may be possible to account for the existing measurements of water emission from T Tauri disks without invoking transport of water from cooler to warmer regions. The hydroxyl radical OH is underabundant in this model of disk atmospheres and requires consideration of additional production and excitation processes.« less
  • Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive tomore » grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.« less