skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The lunar thermal ice pump

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States)
  2. Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

OSTI ID:
22356550
Journal Information:
Astrophysical Journal, Vol. 788, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

Evidence of water ice near the lunar poles
Conference · Mon Jan 01 00:00:00 EST 2001 · OSTI ID:22356550

LUNAR OUTGASSING, TRANSIENT PHENOMENA, AND THE RETURN TO THE MOON. II. PREDICTIONS AND TESTS FOR OUTGASSING/REGOLITH INTERACTIONS
Journal Article · Sun Dec 20 00:00:00 EST 2009 · Astrophysical Journal · OSTI ID:22356550

Limits to the lunar atmosphere
Journal Article · Fri Feb 01 00:00:00 EST 1991 · Journal of Geophysical Research; (United States) · OSTI ID:22356550