skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy

Abstract

Purpose: To evaluate the lateral beam penumbra in pencil beam scanning proton therapy delivered using a dynamic collimator device capable of trimming a portion of the primary beam in close proximity to the patient. Methods: Monte Carlo simulations of pencil beams were performed using MCNPX. Each simulation transported a 125 MeV proton pencil beam through a range shifter, past acollimator, and into a water phantom. Two parameters were varied among the simulations, the source beam size (sigma in air from 3 to 9 mm), and the position of the edge of the collimator (placed from 0 to 30 mm from the central axis of the beam). Proton flux was tallied at the phantom surface to determine the effective beam sizefor all combinations of source beam size and collimator edge position. Results: Quantifying beam size at the phantom surface provides a useful measure tocompare performance among varying source beam sizes and collimation conditions. For arelatively large source beam size (9 mm) entering the range shifter, sigma at thesurface was found to be 10 mm without collimation versus 4 mm with collimation. Additionally, sigma at the surface achievable with collimation was found to be smallerthan for any uncollimated beam, even for verymore » small source beam sizes. Finally, thelateral penumbra achievable with collimation was determined to be largely independentof the source beam size. Conclusion: Collimation can significantly reduce proton pencil beam lateral penumbra.Given the known dosimetric disadvantages resulting from large beam spot sizes,employing a dynamic collimation system can significantly improve lateral tissuesparing in spot-scanned dose distributions.« less

Authors:
; ; ;  [1]
  1. University Of Iowa, Iowa City, IA (United States)
Publication Date:
OSTI Identifier:
22355877
Resource Type:
Journal Article
Journal Name:
Medical Physics
Additional Journal Information:
Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-2405
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANIMAL TISSUES; COLLIMATORS; COMPUTERIZED SIMULATION; MONTE CARLO METHOD; PATIENTS; PHANTOMS; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY

Citation Formats

Hill, P, Wang, D, Flynn, R, and Hyer, D. SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy. United States: N. p., 2014. Web. doi:10.1118/1.4888654.
Hill, P, Wang, D, Flynn, R, & Hyer, D. SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy. United States. https://doi.org/10.1118/1.4888654
Hill, P, Wang, D, Flynn, R, and Hyer, D. 2014. "SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy". United States. https://doi.org/10.1118/1.4888654.
@article{osti_22355877,
title = {SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy},
author = {Hill, P and Wang, D and Flynn, R and Hyer, D},
abstractNote = {Purpose: To evaluate the lateral beam penumbra in pencil beam scanning proton therapy delivered using a dynamic collimator device capable of trimming a portion of the primary beam in close proximity to the patient. Methods: Monte Carlo simulations of pencil beams were performed using MCNPX. Each simulation transported a 125 MeV proton pencil beam through a range shifter, past acollimator, and into a water phantom. Two parameters were varied among the simulations, the source beam size (sigma in air from 3 to 9 mm), and the position of the edge of the collimator (placed from 0 to 30 mm from the central axis of the beam). Proton flux was tallied at the phantom surface to determine the effective beam sizefor all combinations of source beam size and collimator edge position. Results: Quantifying beam size at the phantom surface provides a useful measure tocompare performance among varying source beam sizes and collimation conditions. For arelatively large source beam size (9 mm) entering the range shifter, sigma at thesurface was found to be 10 mm without collimation versus 4 mm with collimation. Additionally, sigma at the surface achievable with collimation was found to be smallerthan for any uncollimated beam, even for very small source beam sizes. Finally, thelateral penumbra achievable with collimation was determined to be largely independentof the source beam size. Conclusion: Collimation can significantly reduce proton pencil beam lateral penumbra.Given the known dosimetric disadvantages resulting from large beam spot sizes,employing a dynamic collimation system can significantly improve lateral tissuesparing in spot-scanned dose distributions.},
doi = {10.1118/1.4888654},
url = {https://www.osti.gov/biblio/22355877}, journal = {Medical Physics},
issn = {0094-2405},
number = 6,
volume = 41,
place = {United States},
year = {Sun Jun 01 00:00:00 EDT 2014},
month = {Sun Jun 01 00:00:00 EDT 2014}
}