skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural studies of human glioma pathogenesis-related protein 1

Journal Article · · Acta Crystallographica. Section D: Biological Crystallography
;  [1]
  1. L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States)

Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

OSTI ID:
22351246
Journal Information:
Acta Crystallographica. Section D: Biological Crystallography, Vol. 67, Issue Pt 10; Other Information: PMCID: PMC3176621; PMID: 21931216; PUBLISHER-ID: be5181; OAI: oai:pubmedcentral.nih.gov:3176621; Copyright (c) International Union of Crystallography 2011; Country of input: International Atomic Energy Agency (IAEA); ISSN 0907-4449
Country of Publication:
Denmark
Language:
English