skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructure of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} cathode material for lithium ion battery: Dependence of crystal structure on calcination and heat-treatment temperature

Journal Article · · Materials Research Bulletin

Graphical abstract: TEM micrograph of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} compound calcined at 900 °C. - Highlights: • Synthesis condition of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} compound was optimized. • Effect of calcination and heat treatment on the structure was investigated. • Controlled heat-treatment reduced cation mixing and improved structural ordering. • Calcination and heat-treatment condition affected distribution of particle size. - Abstract: Cathode compounds of composition Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} have been prepared by calcination of the precursor materials at 700, 800, 900 and 1000 °C for 24 h and by subsequent heat-treatments at 1100 °C for 4–6 h. It has been observed that the structural ordering and particle size increase with increasing calcination temperature. The compounds calcined at 700 °C and 800 °C are not well-crystallized, but the distribution of particles is uniform. However, the compounds calcined at 900 °C and 1000 °C are well-crystallized with a non-uniform distribution of particles. The compounds calcined at 900 °C are well-crystallized with a well-ordered hexagonal structure. The samples calcined at 800 °C and heat treated at 1100 °C for 4 h also show same structure. They have smooth surface morphology with uniform distribution of particles in the sub-micron (0.15–0.40 μm) range and less amount of cation mixing.

OSTI ID:
22341784
Journal Information:
Materials Research Bulletin, Vol. 48, Issue 9; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English