skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry

Abstract

Purpose: To characterize and explore the efficacy of a novel low-cost, lowfluid, broad-beam optical-CT system for 3D-dosimetry in radiochromic Presage dosimeters. Leading current optical-CT systems incorporate expensive glass-based telecentric lens technology, and a fluid bath with substantial amounts of fluid (which introduces an inconvenience factor) to minimize refraction artifacts. Here we introduce a novel system which addresses both these limitations by: (1) the use of Fresnel lenses in a telecentric arrangement, and (2) a ‘solid’ fluid bath which dramatically reduces the amount of fluid required for refractive-index (RI) matching. Materials Methods: A fresnel based telecentric optical-CT system was constructed which expands light from a single red LED source into a nominally parallel beam into which a cubic ‘dry-tank’ is placed. The drytank consists of a solid polyurethane cube (with the same RI as Presage) but containing a cylindrical cavity (11.5cm diameter × 11cm ) into which the dosimeter is placed for imaging. A narrow (1-3mm) gap between the walls of the dosimeter and dry-tank is filled with a fluid of similar RI. This arrangement reduces the amount of RI fluid from about 1000cc to 75cc, yielding substantial practical benefit in convenience and cost. The new system was evaluated in directmore » comparison against Eclipse planning system from a 4-field parallel-opposed treatmen Results: Gamma calculations of dose from DFOS-dry system versus Eclipse showed 92% and 97% agreement with 4mm/4% and 5mm/5% criteria, respectively, in the central 80% of dose distribution. Reconstructions showed some edge artifacts, as well as some dose underestimation towards the dosimeter edge. Conclusion: The implementation of Fresnel based ‘dry’ optical-CT for 3Ddosimetry would represent an important advance enhancing costeffectiveness and practical viability. The performance of the prototype presented here is not yet comparable to the state-of-the-art, but shows sufficient promise for further investigation to elevate image quality to match gold-standard optical-CT systems. This work was supported by NIH R01CA100835.« less

Authors:
;  [1];  [2];  [3]
  1. Duke University Medical Physics Graduate Program, Durham, NC (United States)
  2. Rider University, Lawrenceville, NJ (United States)
  3. Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)
Publication Date:
OSTI Identifier:
22334055
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CAT SCANNING; DOSEMETERS; DOSIMETRY; FRESNEL LENS; IMAGES; POLYURETHANES; RADIATION DOSE DISTRIBUTIONS; REFRACTIVE INDEX; YIELDS

Citation Formats

Bache, S, Malcolm, J, Adamovics, J, and Oldham, M. SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry. United States: N. p., 2014. Web. doi:10.1118/1.4888217.
Bache, S, Malcolm, J, Adamovics, J, & Oldham, M. SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry. United States. doi:10.1118/1.4888217.
Bache, S, Malcolm, J, Adamovics, J, and Oldham, M. Sun . "SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry". United States. doi:10.1118/1.4888217.
@article{osti_22334055,
title = {SU-E-J-164: An Investigation of a Low-Cost ‘dry’ Optical-CT Scanning System for 3D Dosimetry},
author = {Bache, S and Malcolm, J and Adamovics, J and Oldham, M},
abstractNote = {Purpose: To characterize and explore the efficacy of a novel low-cost, lowfluid, broad-beam optical-CT system for 3D-dosimetry in radiochromic Presage dosimeters. Leading current optical-CT systems incorporate expensive glass-based telecentric lens technology, and a fluid bath with substantial amounts of fluid (which introduces an inconvenience factor) to minimize refraction artifacts. Here we introduce a novel system which addresses both these limitations by: (1) the use of Fresnel lenses in a telecentric arrangement, and (2) a ‘solid’ fluid bath which dramatically reduces the amount of fluid required for refractive-index (RI) matching. Materials Methods: A fresnel based telecentric optical-CT system was constructed which expands light from a single red LED source into a nominally parallel beam into which a cubic ‘dry-tank’ is placed. The drytank consists of a solid polyurethane cube (with the same RI as Presage) but containing a cylindrical cavity (11.5cm diameter × 11cm ) into which the dosimeter is placed for imaging. A narrow (1-3mm) gap between the walls of the dosimeter and dry-tank is filled with a fluid of similar RI. This arrangement reduces the amount of RI fluid from about 1000cc to 75cc, yielding substantial practical benefit in convenience and cost. The new system was evaluated in direct comparison against Eclipse planning system from a 4-field parallel-opposed treatmen Results: Gamma calculations of dose from DFOS-dry system versus Eclipse showed 92% and 97% agreement with 4mm/4% and 5mm/5% criteria, respectively, in the central 80% of dose distribution. Reconstructions showed some edge artifacts, as well as some dose underestimation towards the dosimeter edge. Conclusion: The implementation of Fresnel based ‘dry’ optical-CT for 3Ddosimetry would represent an important advance enhancing costeffectiveness and practical viability. The performance of the prototype presented here is not yet comparable to the state-of-the-art, but shows sufficient promise for further investigation to elevate image quality to match gold-standard optical-CT systems. This work was supported by NIH R01CA100835.},
doi = {10.1118/1.4888217},
journal = {Medical Physics},
number = 6,
volume = 41,
place = {United States},
year = {Sun Jun 01 00:00:00 EDT 2014},
month = {Sun Jun 01 00:00:00 EDT 2014}
}
  • Purpose: To perform simulations investigating the feasibility of “dry” optical-CT, and determine optimal design and scanning parameters for a novel dry tank telecentric optical-CT 3D dosimetry system. Such a system would have important advantages in terms of practical convenience and reduced cost. Methods: A Matlab based ray-tracing simulation platform, ScanSim, was used to model a telecentric system with a polyurethane dry tank, cylindrical dosimeter, and surrounding fluid. This program's capabilities were expanded for the geometry and physics of dry scanning. To categorize the effects of refractive index (RI) mismatches, simulations were run for several dosimeter (RI = 1.5−1.48) and fluidmore » (RI = 1.55−1.33) combinations. Additional simulations examined the effect of increasing gap size (1–5mm) between the dosimeter and tank wall, and of changing the telecentric lens tolerance (0.5°−5°). The evaluation metric is the usable radius; the distance from the dosimeter center where the measured and true doses differ by less than 2%. Results: As the tank/dosimeter RI mismatch increases from 0–0.02, the usable radius decreases from 97.6% to 50.2%. The fluid RI for matching is lower than either the tank or dosimeter RI. Changing gap sizes has drastic effects on the usable radius, requiring more closely matched fluid at large gap sizes. Increasing the telecentric tolerance through a range from 0.5°–5.0° improved the usable radius for every combination of media. Conclusion: Dry optical-CT with telecentric lenses is feasible when the dosimeter and tank RIs are closely matched (<0.01 difference), or when data in the periphery is not required. The ScanSim tool proved very useful in situations when the tank and dosimeter have slight differences in RI by enabling estimation of the optimal choice of RI of the small amount of fluid still required. Some spoiling of the telecentric beam and increasing the tolerance helps recover the usable radius.« less
  • Purpose: Stereography can provide a visualization of the skin surface for radiation therapy patients. The aim of this study was to verify the registration algorithm in a commercial image analysis software, 3dMDVultus, for the fusion of stereograms and CT images. Methods: CT and stereographic scans were acquired of a head phantom and a deformable phantom. CT images were imported in 3dMDVultus and the surface contours were generated by threshold segmentation. Stereograms were reconstructed in 3dMDVultus. The resulting surfaces were registered with Vultus algorithm and then exported to in-house registration software and compared with four algorithms: rigid, affine, non-rigid iterative closestmore » point (ICP) and b-spline algorithm. RMS (root-mean-square residuals of the surface point distances) error between the registered CT and stereogram surfaces was calculated and analyzed. Results: For the head phantom, the maximum RMS error between registered CT surfaces to stereogram was 6.6 mm for Vultus algorithm, whereas the mean RMS error was 0.7 mm. For the deformable phantom, the maximum RMS error was 16.2 mm for Vultus algorithm, whereas the mean RMS error was 4.4 mm. Non-rigid ICP demonstrated the best registration accuracy, as the mean of RMS errors were both within 1 mm. Conclusion: The accuracy of registration algorithm in 3dMDVultus was verified and exceeded RMS of 2 mm for deformable cases. Non-rigid ICP and b-spline algorithms improve the registration accuracy for both phantoms, especially in deformable one. For those patients whose body habitus deforms during radiation therapy, more advanced nonrigid algorithms need to be used.« less
  • Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images weremore » binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.« less
  • Purpose: We compare and investigate the dosimetric impacts on pencil beam scanning (PBS) proton treatment plans generated with CT calibration curves from four different CT scanners and one averaged ‘global’ CT calibration curve. Methods: The four CT scanners are located at three different hospital locations within the same health system. CT density calibration curves were collected from these scanners using the same CT calibration phantom and acquisition parameters. Mass density to HU value tables were then commissioned in a commercial treatment planning system. Five disease sites were chosen for dosimetric comparisons at brain, lung, head and neck, adrenal, and prostate.more » Three types of PBS plans were generated at each treatment site using SFUD, IMPT, and robustness optimized IMPT techniques. 3D dose differences were investigated using 3D Gamma analysis. Results: The CT calibration curves for all four scanners display very similar shapes. Large HU differences were observed at both the high HU and low HU regions of the curves. Large dose differences were generally observed at the distal edges of the beams and they are beam angle dependent. Out of the five treatment sites, lung plans exhibits the most overall range uncertainties and prostate plans have the greatest dose discrepancy. There are no significant differences between the SFUD, IMPT, and the RO-IMPT methods. 3D gamma analysis with 3%, 3 mm criteria showed all plans with greater than 95% passing rate. Two of the scanners with close HU values have negligible dose difference except for lung. Conclusion: Our study shows that there are more than 5% dosimetric differences between different CT calibration curves. PBS treatment plans generated with SFUD, IMPT, and the robustness optimized IMPT has similar sensitivity to the CT density uncertainty. More patient data and tighter gamma criteria based on structure location and size will be used for further investigation.« less
  • Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less