skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study

Abstract

Purpose: Laser-acceleration of particles may offer a cost- and spaceefficient alternative for future radiation therapy with particles. Laser-driven particle beams are pulsed with very short bunch times, and a high number of particles is delivered within one laser shot which cannot be portioned or modulated during irradiation. The goal of this study was to examine whether good treatment plans can be produced for laser-driven proton beams and to investigate the feasibility of a laser-driven treatment unit. Methods: An exponentially decaying proton spectrum was tracked through a gantry and energy selection beam line design to produce multiple proton spectra with different energy widths centered on various nominal energies. These spectra were fed into a treatment planning system to calculate spot scanning proton plans using different lateral widths of the beam and different numbers of protons contained in the initial spectrum. The clinical feasibility of the resulting plans was analyzed in terms of dosimetric quality and the required number of laser shots as an estimation of the overall treatment time. Results: We were able to produce treatment plans with plan qualities of clinical relevance for a maximum initial proton number per laser shot of 6*10{sup 8}. However, the associated minimum number ofmore » laser shots was in the order of 10{sup 4}, indicating a long delivery time in the order of at least 15 minutes, when assuming an optimistic repetition rate of the laser system of 10 Hz. Conclusion: With the simulated beam line and the assumed shape of the proton spectrum it was impossible to produce clinically acceptable treatment plans that can be delivered in a reasonable time. The situation can be improved by a method or a device in the beam line which can modulate the number of protons from shot to shot. Supported by DFG Cluster of Excellence: Munich-Centre for Advanced Photonics.« less

Authors:
;  [1];  [2];  [2];  [3]
  1. Department of Radiation Oncology, Technische Universitaet Muenchen, Klinikum rechts der Isar (Germany)
  2. OncoRay, National Center for Radiation Research in Oncology, Dresden (Germany)
  3. (Germany)
Publication Date:
OSTI Identifier:
22333981
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 60 APPLIED LIFE SCIENCES; IRRADIATION; PARTICLE TRACKS; PLANNING; PROTON BEAMS; PROTON SPECTRA; PULSES; RADIOTHERAPY; SIMULATION

Citation Formats

Hofmann, K, Wilkens, J, Masood, U, Pawelke, J, and Helmholtz-Zentrum Dresden-Rossendorf e.V.. SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study. United States: N. p., 2014. Web. doi:10.1118/1.4887876.
Hofmann, K, Wilkens, J, Masood, U, Pawelke, J, & Helmholtz-Zentrum Dresden-Rossendorf e.V.. SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study. United States. doi:10.1118/1.4887876.
Hofmann, K, Wilkens, J, Masood, U, Pawelke, J, and Helmholtz-Zentrum Dresden-Rossendorf e.V.. 2014. "SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study". United States. doi:10.1118/1.4887876.
@article{osti_22333981,
title = {SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study},
author = {Hofmann, K and Wilkens, J and Masood, U and Pawelke, J and Helmholtz-Zentrum Dresden-Rossendorf e.V.},
abstractNote = {Purpose: Laser-acceleration of particles may offer a cost- and spaceefficient alternative for future radiation therapy with particles. Laser-driven particle beams are pulsed with very short bunch times, and a high number of particles is delivered within one laser shot which cannot be portioned or modulated during irradiation. The goal of this study was to examine whether good treatment plans can be produced for laser-driven proton beams and to investigate the feasibility of a laser-driven treatment unit. Methods: An exponentially decaying proton spectrum was tracked through a gantry and energy selection beam line design to produce multiple proton spectra with different energy widths centered on various nominal energies. These spectra were fed into a treatment planning system to calculate spot scanning proton plans using different lateral widths of the beam and different numbers of protons contained in the initial spectrum. The clinical feasibility of the resulting plans was analyzed in terms of dosimetric quality and the required number of laser shots as an estimation of the overall treatment time. Results: We were able to produce treatment plans with plan qualities of clinical relevance for a maximum initial proton number per laser shot of 6*10{sup 8}. However, the associated minimum number of laser shots was in the order of 10{sup 4}, indicating a long delivery time in the order of at least 15 minutes, when assuming an optimistic repetition rate of the laser system of 10 Hz. Conclusion: With the simulated beam line and the assumed shape of the proton spectrum it was impossible to produce clinically acceptable treatment plans that can be delivered in a reasonable time. The situation can be improved by a method or a device in the beam line which can modulate the number of protons from shot to shot. Supported by DFG Cluster of Excellence: Munich-Centre for Advanced Photonics.},
doi = {10.1118/1.4887876},
journal = {Medical Physics},
number = 6,
volume = 41,
place = {United States},
year = 2014,
month = 6
}
  • Purpose: Laser-driven proton acceleration is suggested as a cost- and space-efficient alternative for future radiation therapy centers, although the properties of these beams are fairly different compared to conventionally accelerated proton beams. The laser-driven proton beam is extremely pulsed containing a very high proton number within ultrashort bunches at low bunch repetition rates of few Hz and the energy spectrum of the protons per bunch is very broad. Moreover, these laser accelerated bunches are subject to shot-to-shot fluctuations. Therefore, the aim of this study was to investigate the feasibility of a compact gantry design for laser-driven proton therapy and tomore » determine limitations to comply with. Methods: Based on a published gantry beam line design which can filter parabolic spectra from an exponentially decaying broad initial spectrum, a treatment planning study was performed on real patient data sets. All potential parabolic spectra were fed into a treatment planning system and numerous spot scanning proton plans were calculated. To investigate limitations in the fluence per bunch, the proton number of the initial spectrum and the beam width at patient entrance were varied. A scenario where only integer shots are delivered as well as an intensity modulation from shot to shot was studied. The resulting plans were evaluated depending on their dosimetric quality and in terms of required treatment time. In addition, the influence of random shot-to-shot fluctuations on the plan quality was analyzed. Results: The study showed that clinically relevant dose distributions can be produced with the system under investigation even with integer shots. For small target volumes receiving high doses per fraction, the initial proton number per bunch must remain between 1.4 × 10{sup 8} and 8.3 × 10{sup 9} to achieve acceptable delivery times as well as plan qualities. For larger target volumes and standard doses per fraction, the initial proton number is even more restricted to stay between 1.4 × 10{sup 9} and 2.9 × 10{sup 9}. The lowest delivery time that could be reached for such a case was 16 min for a 10 Hz system. When modulating the intensity from shot to shot, the delivery time can be reduced to 6 min for this scenario. Since the shot-to-shot fluctuations are of random nature, a compensation effect can be observed, especially for higher laser shot numbers. Therefore, a fluctuation of ±30% within the proton number does not translate into a dosimetric deviation of the same size. However, for plans with short delivery times these fluctuations cannot cancel out sufficiently, even for ±10% fluctuations. Conclusions: Under the analyzed terms, it is feasible to achieve clinically relevant dose distributions with laser-driven proton beams. However, to keep the delivery times of the proton plans comparable to conventional proton plans for typical target volumes, a device is required which can modulate the bunch intensity from shot to shot. From the laser acceleration point of view, the proton number per bunch must be kept under control as well as the reproducibility of the bunches.« less
  • Purpose: The aim of this study is to evaluate the feasibility of using a dual-energy CBCT (DECBCT) in proton therapy treatment planning to allow for accurate electron density estimation. Methods: For direct comparison, two scenarios were selected: a dual-energy fan-beam CT (high: 140 kVp, low: 80 kVp) and a DECBCT (high: 125 kVp, low: 80 kVp). A Gammex 467 tissue characterization phantom was used, including the rods of air, water, bone (B2–30% mineral), cortical bone (SB3), lung (LN-300), brain, liver and adipose. For the CBCT, Hounsfield Unit (HU) numbers were first obtained from the reconstructed images after a calibration wasmore » made based on water (=0) and air materials (=−1000). For each tissue surrogate, region-of-interest (ROI) analyses were made to derive high-energy and low-energy HU values (HUhigh and HUlow), which were subsequently used to estimate electron density based on the algorithm as previously described by Hunemohr N., et al. Parameters k1 and k2 are energy dependent and can be derived from calibration materials. Results: While for the dual-energy FBCT, the electron density is found be within +/−3% error relative to the values provided by the phantom vendor: −1.8% (water), 0.03% (lung), 1.1% (brain), −2.82% (adipose), −0.49% (liver) and −1.89% (cortical bones). While for the DECBCT, the estimation of electron density exhibits a relatively larger variation: −1.76% (water), −36.7% (lung), −1.92% (brain), −3.43% (adipose), 8.1% (liver) and 9.5% (cortical bones). Conclusion: For DECBCT, the accuracy of electron density estimation is inferior to that of a FBCT, especially for materials of either low-density (lung) or high density (cortical bone) compared to water. Such limitation arises from inaccurate HU number derivation in a CBCT. Advanced scatter-correction and HU calibration routines, as well as the deployment of photon counting CT detectors need be investigated to minimize the difference between FBCT and CBCT.« less
  • Purpose: We evaluated sparing of normal structures using 3-dimensional (3D) treatment planning for proton therapy of ocular melanomas. Methods and Materials: We evaluated 26 consecutive patients with choroidal melanomas on a prospective registry. Ophthalmologic work-up included fundoscopic photographs, fluorescein angiography, ultrasonographic evaluation of tumor dimensions, and magnetic resonance imaging of orbits. Three tantalum clips were placed as fiducial markers to confirm eye position for treatment. Macula, fovea, optic disc, optic nerve, ciliary body, lacrimal gland, lens, and gross tumor volume were contoured on treatment planning compute tomography scans. 3D treatment planning was performed using noncoplanar field arrangements. Patients were typicallymore » treated with 3 fields, with at least 95% of planning target volume receiving 50 GyRBE in 5 fractions. Results: Tumor stage was T1a in 10 patients, T2a in 10 patients, T2b in 1 patient, T3a in 2 patients, T3b in 1 patient, and T4a in 2 patients. Acute toxicity was mild. All patients completed treatment as planned. Mean optic nerve dose was 10.1 Gy relative biological effectiveness (RBE). Ciliary body doses were higher for nasal (mean: 11.4 GyRBE) than temporal tumors (5.8 GyRBE). Median follow-up was 31 months (range: 18-40 months). Six patients developed changes which required intraocular bevacizumab or corticosteroid therapy, but only 1 patient developed neovascular glaucoma. Five patients have since died: 1 from metastatic disease and 4 from other causes. Two patients have since required enucleation: 1 due to tumor and 1 due to neovascular glaucoma. Conclusions: 3D treatment planning can be used to obtain appropriate coverage of choroidal melanomas. This technique is feasible with relatively low doses to anterior structures, and appears to have acceptable rates of local control with low risk of enucleation. Further evaluation and follow-up is needed to determine optimal dose-volume relationships for organs at risk to decrease complications rates.« less
  • Purpose: To assess the dosimetric equivalence of MRI based proton planning vs. single energy x-ray CT. Methods: 8 glioblastoma patients were imaged with CT and MRI after surgical resection. T1-weighted 3DMPRAGE was used to delineate the GTV, which was subsequently rigidly registered to the CT volume. A pseudoCT was generated from the aligned MRI by combining segmentation and atlas-based approaches. The spatial resolution both for pseudo- and real CT was 0.6×0.6×2.5mm. Three orthogonal proton beams were simulated on the pseudoCT. Two co-planar beams were set on the axial plane. The third one was planned parallel to the cranio-caudal (CC) direction.more » Each beam was set to cover the GTV at 98% of the nominal dose (18Gy). The proton plan was copied and transferred to the real CT, including aperture/compensator geometry. Dose comparison between pseudoCT and CT plan was performed beam-by-beam by quantifying the range shift of dose profile on each slice of the GTV. The GTV’s V{sub 98} was computed for the CT. Results: For beams in axial plane the median absolute value of the range shift was 0.3mm, with 0.9mm and 1.4mm as 95th percentile and maximum, respectively. Worst scenarios were found for the CC beam, where we measured 1.1mm (median), 2.7mm (95thpercentile) and 5mm (maximum). Regardless the direction, beams passing through the surgical site, where metal (Titanium MRI-compatible) staples were present, were mostly affected by range shift. GTV’s V{sub 98} for CT was not lower than 99.3%. Conclusion: The study showed the clinical feasibility of an MRI-alone proton plan. Advantages include the possibility to rely on better soft tissue contrast for target and organs at risk delineation without the need of further CT scan and image registration. Additional investigation is required in presence of metal implants along the beam path and to account for partial volume effects due to slice thickness.« less
  • Purpose: To investigate the applicability of feasibility-seeking cyclic orthogonal projections to the field of intensity modulated proton therapy (IMPT) inverse planning. Feasibility of constraints only, as opposed to optimization of a merit function, is less demanding algorithmically and holds a promise of parallel computations capability with non-cyclic orthogonal projections algorithms such as string-averaging or block-iterative strategies. Methods: A virtual 2D geometry was designed containing a C-shaped planning target volume (PTV) surrounding an organ at risk (OAR). The geometry was pixelized into 1 mm pixels. Four beams containing a subset of proton pencil beams were simulated in Geant4 to provide themore » system matrix A whose elements a-ij correspond to the dose delivered to pixel i by a unit intensity pencil beam j. A cyclic orthogonal projections algorithm was applied with the goal of finding a pencil beam intensity distribution that would meet the following dose requirements: D-OAR < 54 Gy and 57 Gy < D-PTV < 64.2 Gy. The cyclic algorithm was based on the concept of orthogonal projections onto half-spaces according to the Agmon-Motzkin-Schoenberg algorithm, also known as ‘ART for inequalities’. Results: The cyclic orthogonal projections algorithm resulted in less than 5% of the PTV pixels and less than 1% of OAR pixels violating their dose constraints, respectively. Because of the abutting OAR-PTV geometry and the realistic modelling of the pencil beam penumbra, complete satisfaction of the dose objectives was not achieved, although this would be a clinically acceptable plan for a meningioma abutting the brainstem, for example. Conclusion: The cyclic orthogonal projections algorithm was demonstrated to be an effective tool for inverse IMPT planning in the 2D test geometry described. We plan to further develop this linear algorithm to be capable of incorporating dose-volume constraints into the feasibility-seeking algorithm.« less