skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

Abstract

Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobilemore » boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.« less

Authors:
; ;  [1];  [2]
  1. The Institute of Cancer Research, London (United Kingdom)
  2. (United Kingdom)
Publication Date:
OSTI Identifier:
22325233
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 60 APPLIED LIFE SCIENCES; ACCURACY; ANIMAL TISSUES; CALORIMETRY; COMPARATIVE EVALUATIONS; GROUND TRUTH MEASUREMENTS; IMAGES; INCLUSIONS; MAMMARY GLANDS; PHANTOMS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; SURGERY; X RADIATION

Citation Formats

Juneja, P, Harris, E, Bamber, J, and Royal Marsden NHS Foundation Trust, London. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study. United States: N. p., 2014. Web. doi:10.1118/1.4888128.
Juneja, P, Harris, E, Bamber, J, & Royal Marsden NHS Foundation Trust, London. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study. United States. doi:10.1118/1.4888128.
Juneja, P, Harris, E, Bamber, J, and Royal Marsden NHS Foundation Trust, London. 2014. "SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study". United States. doi:10.1118/1.4888128.
@article{osti_22325233,
title = {SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study},
author = {Juneja, P and Harris, E and Bamber, J and Royal Marsden NHS Foundation Trust, London},
abstractNote = {Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.},
doi = {10.1118/1.4888128},
journal = {Medical Physics},
number = 6,
volume = 41,
place = {United States},
year = 2014,
month = 6
}
  • Purpose: To examine variability in target volume delineation for partial breast radiotherapy planning and evaluate characteristics associated with low interobserver concordance. Methods and Materials: Thirty patients who underwent planning CT for adjuvant breast radiotherapy formed the study cohort. Using a standardized scale to score seroma clarity and consensus contouring guidelines, three radiation oncologists independently graded seroma clarity and delineated seroma volumes for each case. Seroma geometric center coordinates, maximum diameters in three axes, and volumes were recorded. Conformity index (CI), the ratio of overlapping volume and encompassing delineated volume, was calculated for each case. Cases with CI {<=}0.50 were analyzedmore » to identify features associated with low concordance. Results: The median time from surgery to CT was 42.5 days. For geometric center coordinates, variations from the mean were 0.5-1.1 mm and standard deviations (SDs) were 0.5-1.8 mm. For maximum seroma dimensions, variations from the mean and SDs were predominantly <5 mm, with the largest SDs observed in the medial-lateral axis. The mean CI was 0.61 (range, 0.27-0.84). Five cases had CI {<=}0.50. Conformity index was significantly associated with seroma clarity (p < 0.001) and seroma volume (p < 0.002). Features associated with reduced concordance included tissue stranding from the surgical cavity, proximity to muscle, dense breast parenchyma, and benign calcifications that may be mistaken for surgical clips. Conclusion: Variability in seroma contouring occurred in three dimensions, with the largest variations in the medial-lateral axis. Awareness of clinical features associated with reduced concordance may be applied toward training staff and refining contouring guidelines for partial breast radiotherapy trials.« less
  • Purpose: The role of three-dimensional breast ultrasound (3D US) in planning partial breast radiotherapy (PBRT) is unknown. This study evaluated the accuracy of coregistration of 3D US to planning computerized tomography (CT) images, the seroma contouring consistency of radiation oncologists using the two imaging modalities and the clinical situations in which US was associated with improved contouring consistency compared to CT. Materials and Methods: Twenty consecutive women with early-stage breast cancer were enrolled prospectively after breast-conserving surgery. Subjects underwent 3D US at CT simulation for adjuvant RT. Three radiation oncologists independently contoured the seroma on separate CT and 3D USmore » image sets. Seroma clarity, seroma volumes, and interobserver contouring consistency were compared between the imaging modalities. Associations between clinical characteristics and seroma clarity were examined using Pearson correlation statistics. Results: 3D US and CT coregistration was accurate to within 2 mm or less in 19/20 (95%) cases. CT seroma clarity was reduced with dense breast parenchyma (p = 0.035), small seroma volume (p < 0.001), and small volume of excised breast tissue (p = 0.01). US seroma clarity was not affected by these factors (p = NS). US was associated with improved interobserver consistency compared with CT in 8/20 (40%) cases. Of these 8 cases, 7 had low CT seroma clarity scores and 4 had heterogeneously to extremely dense breast parenchyma. Conclusion: 3D US can be a useful adjunct to CT in planning PBRT. Radiation oncologists were able to use US images to contour the seroma target, with improved interobserver consistency compared with CT in cases with dense breast parenchyma and poor CT seroma clarity.« less
  • Purpose: To examine MRI and CT for glandular breast tissue (GBT) volume delineation and to assess interobserver variability. Methods and Materials: Fifteen breast cancer patients underwent a planning CT and MRI, consecutively, in the treatment position. Four observers (two radiation oncologists and two radiologists) delineated the GBT according to the CT and separately to the MR images. Volumes, centers of mass, maximum extensions with standard deviations (SD), and interobserver variability were quantified. Observers viewed delineation differences between MRI and CT and delineation differences among observers. Results: In cranio-lateral and cranio-medial directions, GBT volumes were delineated larger using MRI when comparedmore » with those delineated with CT. Center of mass on MRI shifted a mean (SD) 17% (4%) into the cranial direction and a mean 3% (4%) into the dorsal direction when compared with that on the planning CT. Only small variations between observers were noted. The GBT volumes were approximately 4% larger on MRI (mean [SD] ratio MRI to CT GBT volumes, 1.04 [0.06]). Findings were concordant with viewed MRI and CT images and contours. Conformity indices were only slightly different; mean conformity index was 77% (3%) for MRI and 79% (4%) for CT. Delineation differences arising from personal preferences remained recognizable irrespective of the imaging modality used. Conclusions: Contoured GBT extends substantially further into the cranio-lateral and cranio-medial directions on MRI when compared with CT. Interobserver variability is comparable for both imaging modalities. Observers should be aware of existing personal delineation preferences. Institutions are recommended to review and discuss target volume delineations and to design supplementary guidelines if necessary.« less
  • Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET{sub CONV}WB) versus the new brain (BR) PET system using semiconductor detectors (PET{sub NEW}BR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [{sup 18}F]Fluorodeoxyglucose-PET images were acquired using both the PET{sub NEW}BR and the PET{sub CONV}WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET{sub CONV}WB and PET{sub NEW}BR images were coregistered with the samemore » set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET{sub CONV}WB (GTV{sub CONV}) images or PET{sub NEW}BR (GTV{sub NEW}) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume ({+-}standard deviation [SD]) of GTV{sub NEW} was 15.7 ml ({+-}9.9) ml, and that of GTV{sub CONV} was 34.0 ({+-}20.5) ml. The average GTV{sub NEW} was significantly smaller than that of GTV{sub CONV} (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN{sub NEW}) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning.« less
  • Purpose: Four-dimensional computed tomography (4D-CT) is commonly used to account for respiratory motion of target volumes in radiotherapy to the thorax. From the 4D-CT acquisition, a maximum-intensity projection (MIP) image set can be created and used to help define the tumor motion envelope or the internal gross tumor volume (iGTV). The purpose of this study was to quantify the differences in automatically contoured target volumes for usage in the delivery of stereotactic body radiation therapy using MIP data sets generated from one of the four methods: (1) 4D-CT phase-binned (PB) based on retrospective phase calculations, (2) 4D-CT phase-corrected phase-binned (PC-PB)more » based on motion extrema, (3) 4D-CT amplitude-binned (AB), and (4) cine CT built from all available images. Methods: MIP image data sets using each of the four methods were generated for a cohort of 28 patients who had prior thoracic 4D-CT scans that exhibited lung tumor motion of at least 1 cm. Each MIP image set was automatically contoured on commercial radiation treatment planning system. Margins were added to the iGTV to observe differences in the final simulated planning target volumes (PTVs). Results: For all patients, the iGTV measured on the MIP generated from the entire cine CT data set (iGTV{sub cine}) was the largest. Expressed as a percentage of iGTV{sub cine}, 4D-CT iGTV (all sorting methods) ranged from 83.8% to 99.1%, representing differences in the absolute volume ranging from 0.02 to 4.20 cm{sup 3}; the largest average and range of 4D-CT iGTV measurements was from the PC-PB data set. Expressed as a percentage of PTV{sub cine} (expansions applied to iGTV{sub cine}), the 4D-CT PTV ranged from 87.6% to 99.6%, representing differences in the absolute volume ranging from 0.08 to 7.42 cm{sup 3}. Regions of the measured respiratory waveform corresponding to a rapid change of phase or amplitude showed an increased susceptibility to the selection of identical images for adjacent bins. Duplicate image selection was most common in the AB implementation, followed by the PC-PB method. The authors also found that the image associated with the minimum amplitude measurement did not always correlate with the image that showed maximum tumor motion extent. Conclusions: The authors identified cases in which the MIP generated from a 4D-CT sorting process under-represented the iGTV by more than 10% or up to 4.2 cm{sup 3} when compared to the iGTV{sub cine}. They suggest utilization of a MIP generated from the full cine CT data set to ensure maximum inclusive tumor extent.« less