skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy

Abstract

Cantilevers with resonance frequency ranging from 1 MHz to 100 MHz have been developed for dynamic atomic force microscopy. These sensors are fabricated from 3C-SiC epilayers grown on Si(100) substrates by low pressure chemical vapor deposition. They use an on-chip method both for driving and sensing the displacement of the cantilever. A first gold metallic loop deposited on top of the cantilever is used to drive its oscillation by electrothermal actuation. The sensing of this oscillation is performed by monitoring the resistance of a second Au loop. This metallic piezoresistive detection method has distinct advantages relative to more common semiconductor-based schemes. The optimization, design, fabrication, and characteristics of these cantilevers are discussed.

Authors:
; ; ; ;  [1];  [2]; ; ;  [3]; ; ;  [4]; ; ; ;  [5]; ;  [6]
  1. LPN, CNRS-UPR20, route de Nozay, 91460 Marcoussis (France)
  2. Centre de Recherche sur l'Hetero-Epitaxie et ses Applications CNRS, Rue Bernard Gregory, 06560 Valhonne (France)
  3. NOVASiC, Savoie Technolac, Arche bât 4, BP 267, 73375 Le Bourget du Lac Cedex (France)
  4. Université François Rabelais, Tours, GREMAN, CNRS-UMR7347, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France)
  5. IM2NP-CNRS/Aix-Marseille University, 38 rue Frédéric Joliot-Curie, 13451 Marseille (France)
  6. CEMES, CNRS UPR 8011 et Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse (France)
Publication Date:
OSTI Identifier:
22314564
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ATOMIC FORCE MICROSCOPY; CHEMICAL VAPOR DEPOSITION; DEPOSITS; DESIGN; DETECTION; FABRICATION; GOLD; MHZ RANGE 01-100; OSCILLATIONS; SEMICONDUCTOR MATERIALS; SENSORS; SILICON CARBIDES; SUBSTRATES

Citation Formats

Boubekri, R., Cambril, E., Couraud, L., Bernardi, L., Madouri, A., Portail, M., Chassagne, T., Moisson, C., Zielinski, M., Jiao, S., Michaud, J.-F., Alquier, D., Bouloc, J., Nony, L., Bocquet, F., Loppacher, C., Martrou, D., and Gauthier, S., E-mail: gauthier@cemes.fr. Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy. United States: N. p., 2014. Web. doi:10.1063/1.4891833.
Boubekri, R., Cambril, E., Couraud, L., Bernardi, L., Madouri, A., Portail, M., Chassagne, T., Moisson, C., Zielinski, M., Jiao, S., Michaud, J.-F., Alquier, D., Bouloc, J., Nony, L., Bocquet, F., Loppacher, C., Martrou, D., & Gauthier, S., E-mail: gauthier@cemes.fr. Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy. United States. doi:10.1063/1.4891833.
Boubekri, R., Cambril, E., Couraud, L., Bernardi, L., Madouri, A., Portail, M., Chassagne, T., Moisson, C., Zielinski, M., Jiao, S., Michaud, J.-F., Alquier, D., Bouloc, J., Nony, L., Bocquet, F., Loppacher, C., Martrou, D., and Gauthier, S., E-mail: gauthier@cemes.fr. Thu . "Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy". United States. doi:10.1063/1.4891833.
@article{osti_22314564,
title = {Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy},
author = {Boubekri, R. and Cambril, E. and Couraud, L. and Bernardi, L. and Madouri, A. and Portail, M. and Chassagne, T. and Moisson, C. and Zielinski, M. and Jiao, S. and Michaud, J.-F. and Alquier, D. and Bouloc, J. and Nony, L. and Bocquet, F. and Loppacher, C. and Martrou, D. and Gauthier, S., E-mail: gauthier@cemes.fr},
abstractNote = {Cantilevers with resonance frequency ranging from 1 MHz to 100 MHz have been developed for dynamic atomic force microscopy. These sensors are fabricated from 3C-SiC epilayers grown on Si(100) substrates by low pressure chemical vapor deposition. They use an on-chip method both for driving and sensing the displacement of the cantilever. A first gold metallic loop deposited on top of the cantilever is used to drive its oscillation by electrothermal actuation. The sensing of this oscillation is performed by monitoring the resistance of a second Au loop. This metallic piezoresistive detection method has distinct advantages relative to more common semiconductor-based schemes. The optimization, design, fabrication, and characteristics of these cantilevers are discussed.},
doi = {10.1063/1.4891833},
journal = {Journal of Applied Physics},
number = 5,
volume = 116,
place = {United States},
year = {Thu Aug 07 00:00:00 EDT 2014},
month = {Thu Aug 07 00:00:00 EDT 2014}
}